N4917BSCB Optical Receiver Stress Test Solution

400 Gb/s Ethernet - IEEE 802.3bs/cd/db

Introduction

Complete optical receiver stress test solution for 400GbE optical transceivers with automated stress eye calibration and performance compliance testing.

Table of Contents

Optical Receiver Stress Test for 400 Gb/s Ethernet	3
Typical Setup for 200GBASE-LR4/-FR4 Optical Stress Test	2
Optical Receiver Stressed Test Challenges	5
User Interface	9
N4917BSCB Features	12
N4917BSCB Requirements	13
Configuration Guide	14
Kevsight Related Literature	21

Optical Receiver Stress Test for 400 Gb/s Ethernet

The telecommunications industry represented by the IEEE decided to address the steadily increasing need for more bandwidth at a lower cost for the intra and inter data centers by combining the spectral efficient PAM-4 modulation with the mature direct modulation/direct detection technology. The shift from NRZ to PAM-4 modulation effectively doubles the line rates, as compared to optical 100 Gigabit ethernet transceivers, while maintaining modulation speed at 26.56125 Gbaud and enabling continued use of some of the existing 100 G components.

Consequently, the compliance test procedures defined for next-generation 400GBASE transceivers are similar to those adopted in IEEE 802.3ba for NRZ-based 100GBASE transceivers.

But there are noticeable differences:

- A new TDECQ metric is employed to characterize the quality of a transmitted/received signal instead of the traditional eye mask analysis.
- A digital reference equalizer is required to compute various signal metrics during transmitter performance testing or during stress signal calibration for receiver stress testing.
- Because of the significant sensitivity penalty resulting from the shift from NRZ to PAM4, the optical
 transceiver is not expected to operate error-free under the stress conditions defined by the standards or
 during typical use, while forward error correction (FEC) is typically performed outside the transceiver module.

In addition, some flavors like 400GBASE-DR4 are based on 53.125 Gbaud, increasing the requirements for test and measurement equipment. Therefore, achieving accurate, stable and repeatable stress signal calibration, to ensure reliable transceiver performance test and qualification, has become even more challenging. Optical receiver stress test procedures, defined by the IEEE, are performed using several instruments such as a bit error ratio tester, digital sampling oscilloscope, optical reference transmitter and tunable laser source. The purpose of the test is to generate a stable and repeatable stressed optical signal with specific characteristics, and send it to the receiver under test to measure the resulting bit error ratio. However, achieving this is not a trivial task as the combination of different stress factors (inter symbol interference, jitter, sinusoidal interferences, Gaussian noise, optical power level) gives rise to complex dependencies on the target metrics.

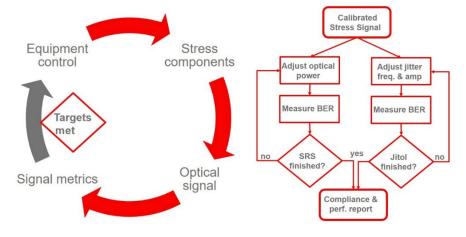


Figure 1. Calibration process and performance test steps as carried out by the N4917BSCB software

Keysight's N4917BSCB software enables a complete test solution from instrument configuration and control to automated stressed signal calibration and system performance test, according to IEEE 802.3bs/cd and db specifications (clauses 121, 122, 124, 138, 140 and 167) for following standards:

- 200GBASE-FR4/-LR4/-DR4, 400GBASE-FR8/-LR8/-DR4 (IEEE 802.3bs)
- 50GBASE-FR/-LR/-SR, 100GBASE-DR (IEEE 802.3cd)
- 100/200/400GBASE-SR/Sr2/SR4 (IEEE 802.3db)

Automation of the stress signal calibration and conformance tests results in considerable time savings. In addition, the N4917BSCB optical receiver stress test solution provides:

- Automated calibration of the optical stressed eye according to IEEE 802.3bs/cd/db clause 121, 122, 124, 138, 139 and 140
- Adjustable target values for outer extinction ratio (OER), transmission and dispersion eye closure (TDECQ), optical modulation amplitude (OMA) enabling user-defined stress signal calibration
- Repeatable and stable calibration of optical stressed PAM-4 eye
- · Unified instrument control and setup
- · Customized device testing and reporting via DUT control and scripting interface

Typical Setup for 200GBASE-LR4/-FR4 Optical Stress Test

The N4917BSCB optical receiver stress test solution consists of a M8040A BERT plus an arbitrary waveform generator for electrical signal and stress generation; an electro-optical converter that modulates the optical signal and a digital sampling oscilloscope which is required for calibration of the stressed eye.

An example setup for 200GBASE-LR4/-FR4 using four 50 Gb/s lanes on four wavelengths in the O-band is shown in Figure 2, which assumes the use of a 200 GAUI- 8 electrical interface. The IEEE 802.3bs standard establishes two ways to provide a clock signal to the digital sampling oscilloscope:

- 1. Using the 'clean clock' of the pattern generator or
- 2. Extracting it from the stressed signal using an external clock recovery

Refer to the configuration guide section for the detailed setup.

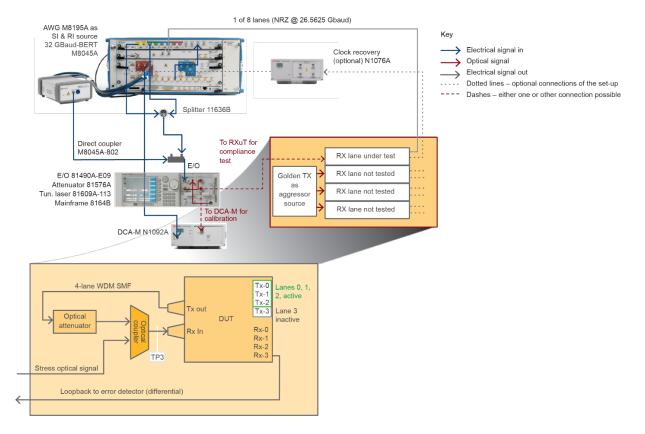


Figure 2. Optical receiver stress test setup for 200GBASE-LR4/-FR4

Optical Receiver Stressed Test Challenges

The IEEE 802.3 standard, describes the optical specifications for optical receivers. The following tables contain the key characteristics 1 of the stress signal measured at TP3 (see Figure 2) to perform stressed receiver sensitivity and jitter tolerance compliance tests. Note that these values are subjected to change in future amendments of the standard. They can be adjusted using the "debug mode" of the *Configure* tab.

Parameter descriptions	200GBASE-FR4	200GBASE-LR4	200GBASE DR4
Stressed receiver conformance test signal calibration pattern	SSPRQ	SSPRQ	SSPRQ
Stressed receiver sensitivity (OMAouter), each lane (max)	-3.8 dBm	–5.4 dBm	-4.3 dBm /-4.1 dBm
Extinction ratio, each lane (min)	3.5 dB	3.5 dB	3.5 dB
Conditions of stressed receiver sensitivity test		·	
Stressed receiver sensitivity pattern	PRBS31Q	PRBS31Q	PRBS31Q
Stressed eye closure for PAM4 (SECQ), lane under test	3.1 dB	3.2 dB	3.2 dB / 3.4 dB
TDECQ equalizer noise enhancement factor(Ceq)	> 1	> 1	> 1

Parameter descriptions	400GBASE-FR8	400GBASE-LR8	400G-DR4	400G-FR4
Stressed receiver conformance test signal calibration pattern	SSPRQ	SSPRQ	SSPRQ	SSPRQ
Stressed receiver sensitivity (OMA _{outer}), each lane (max)	–3.3 dBm	–4.9 dBm	–1.9 dBm	–2.6 dBm
Extinction ratio, each lane (min)	3.5 dB	3.5 dB	3.5 dB	3.5 dB
Conditions of stressed receiver sensitivity test				
Stressed receiver sensitivity pattern	PRBS31Q	PRBS31Q	PRBS31Q	PRBS31Q
Stressed eye closure for PAM4 (SECQ), lane under test	2.9 dB	3.1 dB	3.4 dB	3.4 dB
TDECQ equalizer noise enhancement factor(Ceq)	> 1	> 1	> 1	> 1

Parameter description:	100GBASE- DR	100BASE-FR	100GBASE- LR1	100GBASE- SR	50GBASE- FR1	50GBASE- LR1	50GBASE- SR
Stressed receiver conformance test signal calibration pattern	SSPRQ	SSPRQ	SSPRQ	SSPRQ	SSPRQ	SSPRQ	SSPRQ
Stressed receiver sensitivity (OMAouter), each lane (max)	–1.9 dBm	–2.5 dBm	–4.1 dBm	–2.0 dBm	–5.3 dBm	–6.6 dBm	–3.4 dBm
Extinction ratio, each lane (min)	3.5 dB	3.5 dB	3.5 dB	2.5 dB	3.5 dB	3.5 dB	3 dB
Conditions of stress	sed receiver sen	sitivity test					
Stressed receiver sensitivity pattern	PRBS31Q	PRBS31Q	PRBS31Q	PRBS31Q	PRBS31Q	PRBS31Q	PRBS31Q
Stressed eye closure for PAM4 (SECQ)	3.4 dB	3.4 dB	3.4 dB	4.4 dB	3 dB	3.2 dB	4.5 dB
TDECQ equalizer noise enhancement factor(Ceq)	> 1	> 1	> 1	> 1	>1	>1	> 1

The specified stressed received conformance test signal with a given stressed eye closure (SECQ) is generated by creating a mixture of the following stress components:

- Inter-symbol interferences (ISI) by means of low-pass filter and frequency response of E/O converter
- Sinusoidal jitter (see specification below)
- Sinusoidal amplitude interferer (100 MHz < f_{si} < 2 GHz, non-harmonic to data signal and other stress components)
- Gaussian noise with a bandwidth of at least half the signal baud rate

The N4917BSCB solution software automatically adjusts the setting of the different equipment to generate the stress signal with the desired characteristics.

Applied sinusoidal jitter:

Frequency range	Sinusoidal jitter; peak to peak (UI)	

f < 40 kHz	Not specified
40 kHz ≤ f ≤ 4 MHz	2 x 10 ⁵ / f
4 MHz ≤ f ≤ 10 times loop bandwidth	0.05

The metrics employed for stress signal calibration are detailed below:

OMAouter

The outer *Optical Modulation Amplitude OMA* of an PAM4 signal is the difference between average optical launch power level 3 and power level 0 over a defined run of PAM4 symbols and is measured using a SSPRQ or a PRBS13Q test pattern (defined in sub-clauses 120.5.11.2.2 and 120.5.11.2.3).

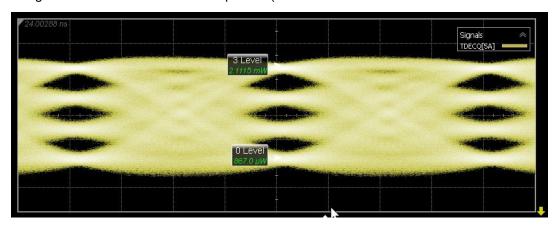


Figure 3. Calculated OMA_{outer} (1.2445 mW = 0.95 dBm)

Extinction Ratio

The extinction ratio of an PAM-4 signal is measured using a SSPRQ or a PRBS13Q test pattern and defined as the ratio of the average launch power level 3 and average launch power level 0 over a defined run of PAM4 symbols.

SECQ/TDECQ

The Transmitter and Dispersion Eye Closure Quaternary (TDECQ) is a measure of the optical transmitter's vertical eye closure as if observed at the end of a worst case fiber. It is defined as the ratio of the amount of noise a reference receiver could add to an ideal signal (with same OMA_{outer}) to the noise it could add to the transmitter under test after transmission over a worst case fiber in order to achieve the same BER.

Expressed in decibels, the TDECQ is given by:

with Q_t as Q-function consistent with target BER (Q_t = 3.414 for 2.4e-4 BER)

with R as RMS noise term of the receiver

The Stress Eye Closure Quaternary (SECQ) metric is identical to TDECQ but refers to the stress signal used for the receiver stress test, while TDECQ is a metric for the transmitter measured after the transmission fiber. For stress signal calibration, the SECQ/TDECQ measurement should be performed using a SSPRQ test pattern captured by a sampling scope with a specific bandwidth and after digital equalization. Details can be found in IEEE802 clause 121.8.

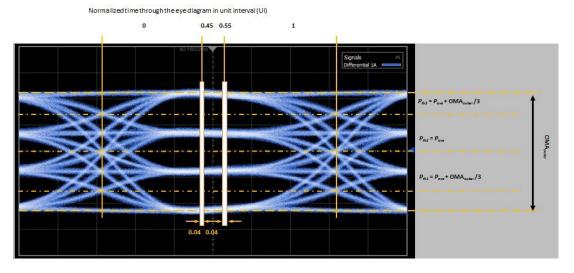


Figure 4. Measurement of TDECQ/SECQ for PAM4 signal

Setting-up a stressed eye compliant with the standard's specifications can be a very time-consuming task because stressed eye parameters are interdependent and therefore several iterations of the optimization cycle are required to converge on the solution. In addition, it is important that the setup is repeatable and remains stable from initiation of the stressed eye calibration to the end of the DUT measurement.

The N4917BSCB optical receiver stress test solution provides a repeatable and stable measurement in a fraction of time compared to manual setup of the stress signal. This not only results in a major time saving during daily measurements, but also speeds-up development of a standard compliant test solution, when compared to a self-made solution.

User Interface

The N4917BSCB user interface is structured to follow the generic workflow of an automated test application (Figure 5).

1. Set Up tab

Check connection to instruments (USB, LAN or GPIB connections are supported) and specify the standard to be checked. This step sets the default values for the stress signal metrics and performance targets listed in the **Configure** tab. You can deactivate the connection check of a particular device by selecting 'not used' in the corresponding Channel or Slot field. This lets you use the internal laser of the reference transmitter instead of the tunable laser source or deactivate one of the interference sources.

2. Select Tests tab

Select the actions or tests you want to perform. For example, you can perform a signal calibration, load settings from a previous calibration, measure characteristics of the current optical signal or perform automated performance measurements. These tests are performed one by one in the order they are listed. Additional functionalities, such as optimization of the reference transmitter bias and optical power adjustment, are available.

3. Configure tab

Specify key instrument settings (de-emphasis, max-min voltage, active ports) as well as the target value for the calibration metrics. The **debug** mode enables you to modify the original standard specifications, such as the TDECQ and ER of the stress signal or the jitter profile to be tested (see Figure 6.). It is also possible to adjust the calibration conditions to your own setup by deactivating the optical power control or accounting for additional loss present in the optical link to the DUT.

4. Connect tab

Displays the hardware connection diagram before the start of a test. This optional step allows the user to check the physical connections between the devices to ensure compliance with the standards.

5. Run and Automate tabs

Run the selected tests and measurements or use your own commands sequence implemented with a python script. User-defined "tags" can be added for each calibration or test.

6. HTML Report and Results tabs

Displays high-level and detailed measurement results. Some tests return a pass/ fail value and others return detailed measurement results (e.g. jitter tolerance measurement).

In addition, information about the measurement status, test progress and reports possible errors during the test to the user are listed in the **Messages** tab located on the bottom.

After selecting the optical standard and connecting to all required instruments in the tab, the user selects the measurement tasks and receiver tests to be performed in the **Select Tests** tab. Hence a complete conformance test and characterization would include the following tasks, provided by the N4917BSCB software:

- · Automatic calibration of the stressed receiver conformance test signal
- Perform a receiver conformance test
- Perform a receiver sensitivity measurement
- Perform a jitter conformance test
- Perform a jitter performance measurement

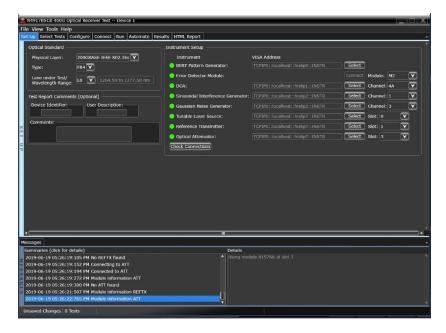
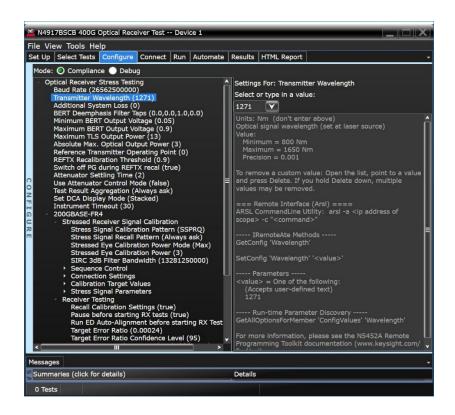



Figure 5. The N4917BSCB software set up tab is used to connect and check equipment

Figure 6. The N4917BSCB software Configure tab lets the user fine-tune the standard compliant stressed receiver test or adapt to the test to other standards by offering multiple, user-editable settings, such as the stress signal parameters or test conformance limits.

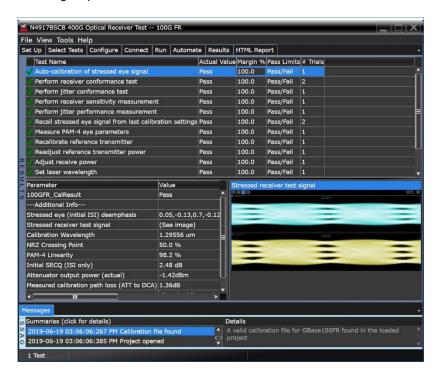


Figure 7. The N4917BSCB results tap provides an overview of the calibration and compliance test outcomes

N4917BSCB Features

The N4917BSCB software creates a stressed PAM-4 optical waveform from the following setting parameters.

Settable parameters

- Data amplitude (mV pp) ¹
- Sinusoidal interferer amplitude (Vpp) ¹
- Sinusoidal interferer frequency (Hz)
- Gaussian noise power ¹
- · Sinusoidal interferer to Gaussian noise ratio
- Periodic jitter amplitude (UI)
- Periodic jitter frequency (Hz)
- Optical power for calibration (dBm)
- OMAouter for DUT test (dBm) ¹
- Extinction ratio for DUT test (dB) ¹
- Optical wavelength (nm)
- De-emphasis coefficients ¹

Calibration and measurement parameters

- Extinction ratio (dB)
- · Initial SECQ (dB)
- TDECQ/SECQ (dB)
- OMAouter for DUT test (dBm)
- Stressed receiver sensitivity (BER vs. dBm)
- TDECQ equalizer noise enhancement factor (Ceq)
- Transition time²

^{2.} For specific interfaces only

^{1.} These values will be adjusted by the software during the calibration process to meet the calibration parameter targets.

N4917BSCB Requirements

The N4917BSCB software runs on an external PC or on M9537A embedded controller.

PC hardware requirements

- Operating system: Microsoft Windows 7, Windows 8, Windows 10, (64 bit)
- Memory: 8 GB RAM minimum
- Monitor resolution: WXGA+ (1440 x 900) minimum

PC installed software requirements

- M8070B: 9.5.560.12;
- FlexDCA: A.07.40.319;
- M8195A: 4.0.0.0,
- M8196A: 2.1.1.0,
- M8054A: 1.0.23.0
- Keysight IO Library Suite Rev. 18.1
- M8070ADVB Advanced Measurement Package for M8000 Series
 - o Ver. 1.0.70.0
- M8195A soft front panel version 4.0 or later or M8196A soft front panel version 2.1.1 or later
- N1010A FlexDCA remote access system A.06.60.378 or later (if using DCA-M)
- IRC option for DCA-M module

PC interfaces

USB, LAN

Instrument firmware requirements

- M8040A BERT: M8070B system software as above
- 81600D/N1000A DCA-X and N1092x: FlexDCA version A.06.60.378 or later
- 8163B/ 8164B LMS: Version V5.25 or later
- 8149xA reference transmitter: Version V5.01 or later

Configuration Guide

The N4917BSCB optical stress test solution is built up from a variety of instruments. For some of the instruments, alternative selections are supported by the N4917BSCB software.

Each instrument is an individual order and not part of a bundle. This configuration guide is designed to help you determine the best configuration for your particular needs. The indicates options required for 53Gbaud flavors.

1. Select the configuration for the M8040A high-performance BERT 64 Gbaud and interference generator

Step 1. BERT chassis configuration

M8040A	High-performance BERT 64 Gbaud
M8040A-BU2	M9505A 5-slot AXIe chassis with USB option, (requires external PC with USB connection)
Step 2. 1st BERT module min	imum required configuration
M8045A	Pattern generator and clock module 32/64 Gbaud, 3 slot AXIe
M8045A-G32/G64 ¹	Pattern generator one channel NRZ, data rate up to 32/64 Gbaud
M8045A-0G3	Advanced jitter sources for receiver characterization, license
M8045A-0G4	De-emphasis, module-wide license
M8045A-0P3	PAM-4 encoding up to 32 Gbaud, module-wide license
M8045A-0P6 ¹	PAM-4 Extension up to 64 Gbaud, module-wide license
M8045A-801	Short cable 1.85 mm (m) to 1.85 mm (m), 0.15 m, absolute matching 699 ps ± 1 ps, Qty 2 recommended
M8057A/B	Remote head for M8045A pattern generator, 1 channel
Step 3. 2 nd BERT module min	imum required configuration (required if BER not provided DUT internal error counter)
M8046A	Analyzer module, 32/64 Gbaud, 1-slot AXIe
M8046A-A32	Analyzer, one channel, data rate up to 32 Gbaud, NRZ
M8046A-0A4/0A5	Clock recovery for 32/64 Gbaud, license (optional)
M8046A-0P3	PAM-4 decoding up to 32 Gbaud, license (optional)
M8046A-0P6 ¹	PAM-4 decoding up to 64 Gbaud, license (optional)
M8046A-801	Cable 2.92 mm (m) to 2.92 mm (m), 0.5 m for clock input, Qty 1 recommended
Step 4. M8000 system softwa	re configuration
M8070B	System software for M8000 Series of BER test solutions
M807ADVB-1xx	Advanced Measurement Package for M8000 Series of BERT Test Solutions (node-locked, transportable, floating or USB license)
Step 5. Interference source in noise interference)	minimum required configuration (select one of the listed signal generators for sinusoidal and Gaussian
M8195A	2- or 4-channel 65 GSa/s arbitrary waveform generator
M8195A-002	2-channel, 65 GSa/s, 2 GSa per module
M8196A	2- or 4-channel 92 GSa/s arbitrary waveform generator
M8196A-002	2-channels, 92 GSa/s, 512 kSa per channel
M8054A	Restricted support. Remote access is not possible. Refer to User Guide
Step 6. Lightwave measurem	ent system mainframe (select one of the lightwave measurement system mainframes)
8163B	2-slot lightwave multimeter (recommended for multimode flavors only)

2. Select the configuration for the optical components of the solution

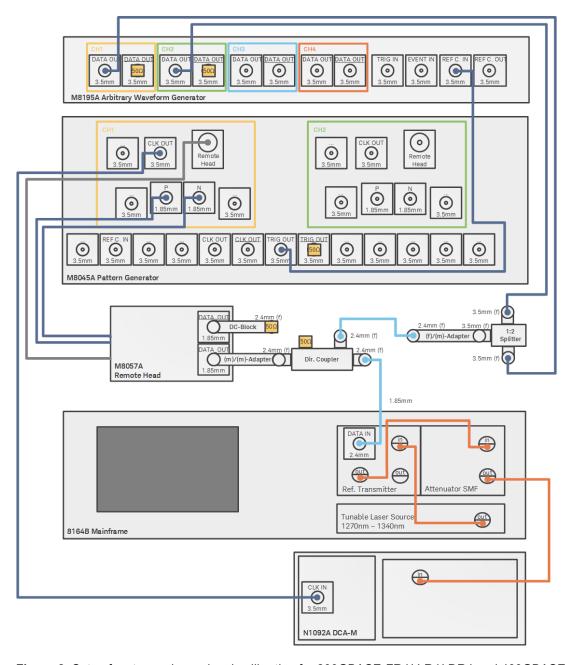
Step 7. Tunable laser source configuration (select one of the tunable lasers)

N7776C	Tunable Laser Source, High Power and Lowest SSE
N7776C-113	Tunable Laser 1240-1380 nm
N7778C	Tunable Laser Source, High Power and Low SSE, Value Line
N7778C-113	Tunable Laser 1240-1380 nm
N7779C	Step-Tunable Laser Source, High Power and Low SSE, Basic Line
81602A	Extra high power tunable laser
81602A-013	1250 nm to 1370 nm wavelength range, +17 dBm peak
81606A	Tunable laser family, high power with low SSE
81606A-113	Tunable laser source 1240 nm to 1380 nm, +13 dBm peak
81608A	Tunable laser family, value line, high power low SSE
81608A-113	Tunable laser source 1240 nm to 1380 nm, +13 dBm peak
81609A	Tunable laser family, basic line, high power low SSE
81609A-113	Tunable laser source 1240 nm to 1380 nm, +13 dBm peak
Optical connector interface	
81000NI	Connector interface, FC - narrow key way (1 required)
Step 8. Electrical—optical c	onverter configuration (select one of the single-mode or multimode reference transmitters)
81490A-E05	Ref Tx special with external laser input and without internal laser
81490A-E09	Ref Tx special with external laser input and internal 1310/1550 nm laser
81490A-E10	Reference transmitter special with 850 nm laser and up to 26 GHz electrical bandwidth
81491A-085 ¹	Ref Tx multimode with internal 850 nm source
81491A-005	Ref Tx single mode with external Input and internal 1310/1550 nm sources
81492A-E01 ¹ 81492A-135 ¹	Ref Tx special with external laser input and internal 1310/1550 nm laser
	Ref Tx with external laser input and internal 1310/1550 nm
Optical connector interface	EC/DC interface (4 required for ECE ECO)
81000FI	FC/PC interface (1 required for -E05, -E09)
81000NI	Connector interface, FC - narrow key way, (1 required for 81490A-E05,-E10, 81491A-085; 2 required for 81490A-E09; 3 required for 81491A-135, 81942A-E01)
Step 9. Optical attenuator c	onfiguration (select one of the single-mode or multimode attenuators)
81000FI	Connector interface, FC - PC (2 required)
81000NI	Connector interface, FC - narrow key way (2 required)
81576A	Optical attenuator high power, power control, straight SMF
81577A	Optical attenuator high power, power control, angled SMF
N7751A	Optical attenuator (1 channel) with 2 optical power meter channels, SMF
N7751A-022	Angled connectors
N7752A	Optical attenuator (2 channels) with 2 optical power meter channels, SMF
N7752A-022	Angled connectors
N7761A	Optical attenuator (1 channel), SMF
N7761A-022	Angled connectors
N7762A	Optical attenuator (2 channels), SMF
N7762A-022	Angled connectors
N7764A	Optical attenuator (4 channels), SMF
N7764A-022	Angled connectors
N7766A	Two-channel multimode optical attenuator
N7766A-050	50/125 µm multimode fiber interface
N7768A	Four-channel multimode optical attenuator
N7768A-050	50/125 µm multimode fiber interface
	55, 125 pm mainted fiber interface

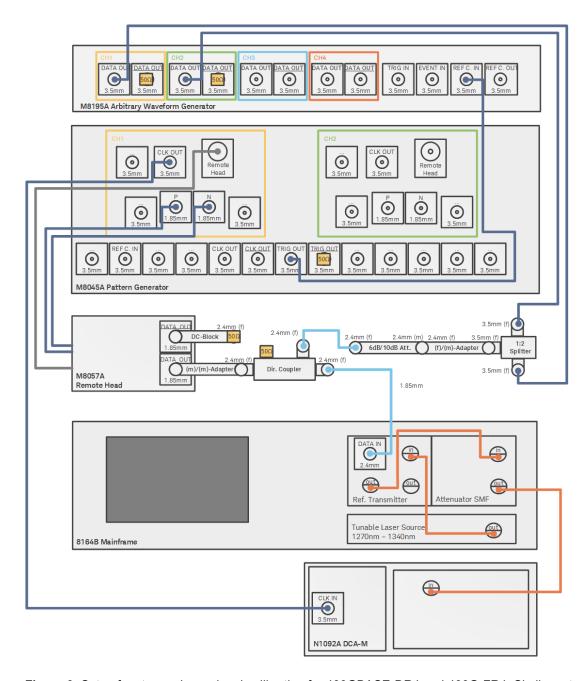
3. Select the configuration for the DCA and N4917BSCB software components of the solution

Step 10. Select the configuration for the DCA X- either a DCA-M

DCA-M minimum required con	figuration (select one DCA-M model)
N1092A	One optical channel
N1092A-IRC	Impulse response correction to provide ideal channel response
N1092B	Two optical channels
N1092B-IRC	Impulse response correction to provide ideal channel response
N1092C	One optical, two electrical channels
N1092C-IRC	Impulse response correction to provide ideal channel response
N1092D	Four optical channels
N1092D-IRC	Impulse response correction to provide ideal channel response
N1092E	Two optical, two electrical channels
N1092E-IRC	Impulse response correction to provide ideal channel response
DCA-M minimum required opti	on configuration
Option LOJ	Reduce residual jitter from 400 fs to < 200 fs
Option PLK	Pattern Lock capability
Choose legacy DCA option OF	
Option 200	Enhanced Jitter Analysis (can also be ordered as N1010A-200 FlexDCA license)
Option 201	Advanced Waveform analysis (can also be ordered as N1010A-201 FlexDCA license)
Option 300	Advanced Amplitude Analysis/Rin/Q-Factor (can also be ordered as N1010A-300 FlexDCA license)
Option 500	Productivity Package (Rapid Eye, TDEC) (can also be ordered as N1010A-500 FlexDCA license)
Option 9FP	PAM-N Analysis SW, (can also be ordered as N1010A-9FP FlexDCA license)
Choose FlexDCA R&D packag	e
N1010100A	Research and Development Package for FlexDCA
DCA-X mainframe minimum co	onfiguration
N1000A	DCA-X Wide-Bandwidth Oscilloscope Mainframe
N1000A-LOJ	Low Jitter Timebase
N1000A-PLK	Pattern Lock Trigger Hardware
Optical Plug-in Module	
N1030A/B	Optical plug-in module for the N1000A DCA-X mainframe
N1030A/B-IRC	Impulse response correction (optical and electrical channels)
N1030A/B-560	Hardware filters for 53-56 Gbaud rates
N1030A/B-280	Hardware filters for 25-28 NRZ Gbaud rates
	overy (select if external clock recovery is required for calibration or BER measured using ED). No M8046A-A04 has been chosen
N1076A	Electrical Clock Recovery (discontinued)
N1076A-232	Supported input rates: 50 MBd to 32 GBd (discontinued)
N1076B	Electrical Clock Recovery
N1076B-232	Supported input rates: 125 MBd to 32 GBd
N1077A	Optical/Electrical Clock Recovery
N1077A-232	Supported input rates: 50 MBd to 32 GBd


N1077A-SMS	Internal single-mode (9/125 μm) and multimode (50/125 μm) splitter		
N1078A	Optical/Electrical Clock Recovery		
N1078A-232	Supported input rates: 125 MBd to 32 GBd		
N1078A-264 ¹	Supported input rates: 125 MBd to 64 GBd		
Step 11. N4917BSCB optical re	eceiver stress test software		
N4917BSCB-1xx	Optical Receiver Stress Test compliance app for 400G, license (node-locked or transportable or floating or USB)		

4. Select the accessory components of the solution


Step 12. Select accessories as needed

M8195A-810	Cable, 2.92 mm (m) to 2.92 mm (m), length 0.85 m (for combing SI and RI) (2 required, 3 if DCA-X)
M8195A-820	Coaxial termination 50 Ω DC to 26.5 GHz, 3.5 mm (male) (2 required)
N4917B-800	Fiber optic cable, PMF, protected 37 cm narrow key FC/APC (only required for 81490A-E05 or 81490A-E09)
N4917B-803	Patchcord FC/PC-FC/PC connector SM fiber 2 m
N4917B-804	Patchcord FC/APC narrow key - FC/PC wide key SM fiber 2 m (choose -803 or -804 depending on attenuator connectors)
N4917B-805	Patchcord cable MM-fiber 50 micro m 2xFC/PC-wide key, length 2 m required (choose if the 81490A-E10 or 81491A-085 multimode Ref Tx)
N4917B-806	Patchcord cable MM-fiber 50 micro m FC/APC-narrow key - FC/PC- wide key, length 2m (choose if using the 81490A-E10 or 81491A-085 multimode Ref Tx)
N4917B-807	Cable assembly SMA (m), 0.5 m, BERT to AWG Ref In, and BERT to DCA Trigger (2 required)
N4917BSCA-800	Directional coupler 50 GHz, 13 dB, 2.4 mm (recommended for external interference source RI/SI)
N9398F	DC block 50 kHz to 50 GHz, 2.4 mm (male). (For unused M8057A data output)
10833A	GPIB cable, 1 m (choose quantity)
11636B	Power splitter DC to 26.5 GHz (choose only if using DCA-X)
11636B	Power splitter DC to 26.5 GHz (for combing SI and RI)
11900A	Coaxial adapter, 2.4 mm (m) to 2.4 mm (m), DC to 50 GHz
11901D	Coaxial adapter 3.5 mm (male) to 2.4 mm (female) (for combing SI and RI)
82357B	USB/GPIB interface
83059A	Coaxial adapter 3.5 mm (male) to 3.5 mm (male) (choose only if using DCA-X)
8490D-010	Coaxial fixed attenuator, DC to 50 GHz
85138A	Coaxial termination 50 Ω DC to 50 GHz, 2.4 mm (male). (2 required)

Figure 8. Setup for stressed eye signal calibration for 200GBASE-FR4/-LR4/-DR4 and 400GBASE-FR8/LR8 with clean clock. Similar setup for 50GBASE-FR and 50GBASE-LR

Figure 9. Setup for stressed eye signal calibration for 400GBASE-DR4 and 400G-FR4. Similar setup for 100GBASE-DR and 100G-FR, 100G-LR

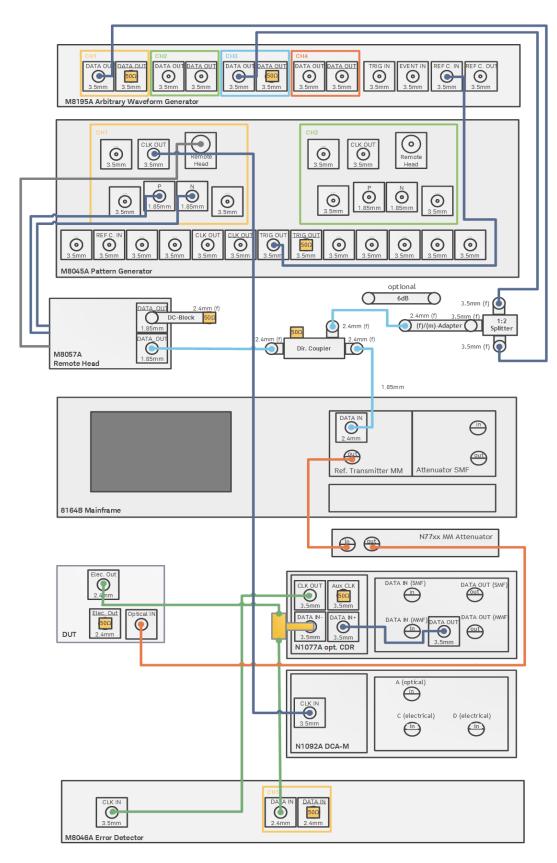


Figure 10. Setup for stressed eye signal calibration and Rx test for 50G-SR/100G-SR2/200G-SR4/400G-SR8

Keysight Related Literature

Publication name	Publication number
M8040A 64 GBaud High-Performance BERT 64 Gbaud - Data Sheet	5992-1525EN
M8195A 65 GSa/s Arbitrary Waveform Generator and M8197A Multi-Channel Synchronization Module - Data Sheet	5992-0014EN
8160xx Family of Tunable Laser Sources - Data Sheet	5989-7321EN
81491A Reference Transmitter - Data Sheet	5992-3358EN
8157xA Optical Attenuators - Data Sheet	5988-2696EN
N77-Series Attenuators - Data Sheet	5990-4394EN
N7779C Tunable Laser - Data Sheet	5992-4217EN
N1090A, N1092A/B/C/D/E and N1094A/B DCA-M Optical and Electrical Sampling Oscilloscopes - Data Sheet	5992-1454EN
Electrical and Optical Clock Data Recovery Solutions - Data Sheet	5992-1620EN
81492A Reference Transmitter - Data Sheet	3120-1071EN
N4917BACA Optical Receiver Stress Test Solution 100 Gb/s Ethernet - Data Sheet	5992-3083EN
N4917BSCB – User Guide	9018-04639

Keysight enables innovators to push the boundaries of engineering by quickly solving design, emulation, and test challenges to create the best product experiences. Start your innovation journey at www.keysight.com.

