Data Acquisition System DAQ-9600

USER MANUAL

REV. A

This manual contains proprietary information, which is protected by copyrights. All rights are reserved. No part of this manual may be photocopied, reproduced or translated to another language without prior written consent of Good Will company.

The information in this manual was correct at the time of printing. However, Good Will continues to improve products and reserves the right to change specifications, equipment, and maintenance procedures at any time without notice.

Good Will Instrument Co., Ltd.
No. 7-1, Jhongsing Rd., Tucheng Dist., New Taipei City 236, Taiwan (R.O.C.).

Table of Contents

SAFETY INSTRUCTIONS 5
Safety Symbols 5
Safety Guidelines 6
GETTING STARTED 9
Characteristics 10
Front Panel Overview 12
Rear Panel Overview 16
Status Bar 18
Set Up 21
MODULE OVERVIEW 23
Modules List 24
Module Installation 25
Module Uninstallation 26
Modules Introduction 26
OPERATION MENUS 33
Home Mode 34
Monitor Mode 37
Scan Mode 47
CONFIGURATION MENUS 50
Channel Menu 51
Switch Mode for Channels 83
Computer Channels 85
Interval Menu 89
Edit Menu 92
Alarm Menu 95
View Menu 98
Module Menu 109
Math Menu 111
Average Menu 126
Log Menu 128
DIGITAL I/O 130
Digital I/O Overview 131
Application: Alarm Output 133
Application: External Trigger 135
SYSTEM \& FIRMWARE 136
View System Info 137
Firmware Update 138
MENU SETTING 140
Configure System 141
Configure Display 161
REMOTE CONTROL 175
Configure Interface 176
Web Control Interface 201
Command Syntax 206
Command Set 209
Status system 327
APPENDIX 332
Fuse Replacement 333
Battery Replacement 334
Factory Default Parameters 336
Specifications 338
DAQ-9600 Section 339
Declaration of Conformity. 353
INDEX 354

Safety instructions

This chapter contains important safety instructions that you must follow when operating the DAQ-9600 and when keeping it in storage. Read the following before any operation to insure your safety and to keep the DAQ-9600 in the best possible condition.

Safety Symbols

These safety symbols may appear in this manual or on the DAQ-9600.

Warning: Identifies conditions or practices that could WARNING result in injury or loss of life.

CAUTION
Caution: Identifies conditions or practices that could result in damage to the DAQ-9600 or to other property.

DANGER High Voltage

Attention Refer to the Manual

Protective Conductor Terminal

Earth (ground) Terminal

Do not dispose electronic equipment as unsorted municipal waste. Please use a separate collection facility or contact the supplier from which this instrument was purchased.

Safety Guidelines

General Guideline

- Make sure that the voltage input level does not exceed DC600V/AC400V.

CAUTION

- Do not place any heavy object on the instrument.
- Avoid severe impact or rough handling that can lead to damaging the instrument.
- Do not discharge static electricity to the instrument.
- Use only mating connectors, not bare wires, for the terminals.
- Do not block or obstruct the cooling fan vent opening.
- Do not perform measurement at the source of a low-voltage installation or at building installations (Note below).
- Do not disassemble the instrument unless you are qualified as service personnel.
(Note) EN 61010-2-030 specifies the measurement categories and their requirements as follows.
- Measurement category IV is for measurement performed at the source of low-voltage installation.
- Measurement category III is for measurement performed in the building installation.
- Measurement category II is for measurement performed on the circuits directly connected to the low voltage installation.
- DO NOT CONNECT ANY MODULE CHANNELS TO MAINS POWER
- Measurement category of the instrument is rated as CAT 'Others', terminals should not be directly connected to the mains.

Power Supply - AC Input voltage: $100 / 120 / 220 / 240 \mathrm{~V}$ AC $\pm 10 \%$,

WARNING

$$
\text { , } 1
$$ $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$

- The power supply voltage should not fluctuate more than 10%.
- Connect the protective grounding conductor of the AC power cord to an earth ground, to avoid electrical shock.

Power Cord Requirement	If the equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired. Do NOT replace the detachable
	MAINS supply cords by inadequately RATED cords.
Suitable supply cord set for use with the equipment:	
- Mains plug: Shall be national approval	
- Mains connector: C13 type	
	- Cable:
	1. Length of power supply cord: less than 3 m
	2. Cross-section of conductors: at least 0.75 mm 2
	3. Cord type shall meet the requirements of IEC
	60227 or IEC 60245 (e.g.: H05VV-F, H05RN-F)

(Note) EN 61010-1 specifies the pollution degrees and their requirements as follows. The DAQ-9600 falls under degree 2 . Pollution refers to "addition of foreign matter, solid, liquid, or gaseous (ionized gases), that may produce a reduction of dielectric strength or surface resistivity".

- Pollution degree 1: No pollution or only dry, non-conductive pollution occurs. The pollution has no influence.
- Pollution degree 2: Normally only non-conductive pollution occurs. Occasionally, however, a temporary conductivity caused by condensation must be expected.
- Pollution degree 3: Conductive pollution occurs, or dry, non-conductive pollution occurs which becomes conductive due to condensation which is expected. In such conditions, equipment is normally protected against exposure to direct sunlight, precipitation, and full wind pressure, but neither temperature nor humidity is controlled.

Storage	- Location: Indoor
Environment	- Temperature: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
	- Humidity: $<90 \% \mathrm{RH}$ (non-condensing)

Disposal

Do not dispose this instrument as unsorted municipal waste. Please use a separate collection facility or contact the supplier from which this instrument was purchased. Please make sure discarded electrical waste is properly recycled to reduce environmental impact.

ETTING STARTED

This chapter describes the DAQ-9600 in a nutshell, including an Overview of its main features and front / rear panel introduction. After going through the Overview, follow the Power-up sequence to properly setup the DAQ-9600.

Please note the information in this manual was correct at the time of printing. However as GW Instek continues to improve its products, changes can occur at any time without notice. Please see the GW Instek website for the latest information and content.

Characteristics 10
Accessories 11
Front Panel Overview 12
Rear Panel Overview 16
Status Bar 18
Set Up 21
Horizontal/Tilt/Vertical Applications 21
Power Up 22

Characteristics

The DAQ-9600 is a portable, dual-display digital multimeter suitable for a wide range of applications, such as production testing, research, and field verification.

Performance - The highest DCV accuracy: 35ppm

- The highest current:2A
- The highest voltage: $600 \mathrm{VDC}, 400 \mathrm{VAC}$
- The highest ACV frequency response: 300 kHz
- The fastest sampling rate: 10K Readings / sec
- Internal memory:100k read memory
- Data Logging to USB

Features - 3-Slot mainframe with built-in $61 / 2$ digit DMM

- Multi functions: ACV, DCV, ACI, DCI, 2W/4W R, Hz, Temp, Continuity, Diode, Period, Capacitance test, REL, dBm, Hold, MX + B, 1/X, REF\%, dB, Compare and Statistics.
- Manual or Auto ranging
- AC true RMS
- Up to 3 temerature measurements:
- RTD, Thermistor and Thermocouples (Built-in

Cold-Junction Compensation)

- Graph Display: BarMeter, TrendChart, Histogram

Interface	• USB device/LAN for remote control /
	• \quad GPIB(factory install)
	• USB device port supports USBCDC and USBTMC USB Host
Software	• DAQ-Data Logger

Accessories		
Standard Accessories	Part number	Description
	CD-ROM	UM, Software, Driver
Optional	P2xx-xxxxxxxx	Safety Instruction Sheet
Accessories	GTL-246	Description
	GTL-205A	USB Cable, USB 2.0, A-B type, 1200mm
	GTL-248	Coupling (K-type)
	GRA-422	GPIB Cable, approx. 2000m
	GRA-436	Rack Mount Kit (19" 2U)

Front Panel Overview

USB Host Port		Connects with USB flash drive for data \log storage and screenshot hardcopy.
Power Switch	on/stBy	Power On/Standby switch with LED lights (green: power on, red: standby). For the power up sequence, see page 22 .
Main Display	The 4.3'"TFT LCD shows measurement results and parameters. For display configurations, see page 161.	
Function Keys	The 6 keys have varied functions per different settings.	
Operation menus keys	The 3 operation-related menus keys are well described below.	
Home/ESC key	Home ESC ——: Long P	Single press to escape from current page. Press and hold the ESC key for 2 seconds to return to the Home screen. Refer to page 34 for more details of Home screen.
Monitor key	Monitor	Single press to activate the Monitor mode in which real-time measured data on a select channel is shown. Refer to the page 37 for details on the Monitor mode. The monitor icon will flash from the status bar when activated.
Scan key		Single press to activate Scan mode in which measurements of all available channels will be proceeded to orderly. Press and hold the key for 2 seconds to exit scan mode. Refer to page 47 for details on Scan mode. The scan icon will be shown from the status bar when activated. In addition, it is available to enable monitor mode on a select channel even though the scan mode is activated.

Configuration The 9 configuration-related menus keys are well described menus keys below.
Channel Key $\quad 7$

Press to enter the Channel setting menu for each channel. Refer to the page 51 for details of channel configurations. When inputting parameters values, it acts a direct number key 7.

Interval Key	8 Interval	Press to enter the Interval setting menu for all channels. Refer to the page 89 for details of interval configurations. When inputting parameters values, it acts a direct number key -8 .
Edit Key	9 Edit	Press to enter the Edit setting menu in which user can copy set parameters from channels to channels. Refer to the page 92 for details of edit configurations. When inputting parameters values, it acts a direct number key -9 .
Alarm Key	4 Alarm	Press to enter the Alarm setting menu for each channel. Refer to the page 95 for details of alarm configurations. When inputting parameters values, it acts a direct number key -4 .
View Key	5 View	Press to enter the View menu in which the measurement data from scan mode can be viewed in vairous details. Refer to the page 98 for details of view configurations. When inputting parameters values, it acts a direct number key - 5 .
Module Key	6 Module	Press to enter the Module setting menu in which all channels from each module can be set up in general for either Scan mode or Switch mode. Refer to the page 109 for details of scan and switch modes configurations. When inputting parameters values, it acts a direct number key - 6 .
Math Key	1 Math	Press to enter the Math setting menu for each channel. Refer to the page 111 for details of math configurations. When inputting parameters values, it acts a direct number key -1 .

Average Key | Press to enter the Average setting menu for each |
| :--- |
| channel. Refer to the page 126 for details of |
| average configurations. When inputting |
| parameters values, it acts a direct number key - 2. |

Rear Panel Overview

Item	Description
1	Slots for Modules Installation
2	Mini GPIB Connector
3	AC Mains Input (Power Cord Socket)
4	AC Mains Line Voltage Selector and Fuse Socket
5	Digital I/O Connector
6	Ethernet (LAN) Connector
7	USB Interface Connector (B Type)

Slots for Modules
Installation

Status Bar

Background Identify each icon within the top status bar.
Status Bar
Display

Item	Description
1	Local/Remote control icon
2	USB-CDC/USB-TMC/LAN/GPIB interface icon
3	Error icon for commands from remote control
4	Locked key icon
5	Monitor mode underway icon
6	Configuration menu identifications
7	Scan mode underway icon
8	Internal memory overflowed icon
9	USB disk connection icon
0	Beep/Key Sound setting icon
A	Internet connection status icon
B	Time display

| Local Control | It indicates the unit is under local
 control mode. |
| :--- | :--- | :--- |
| Remote Control | It indicates the unit is under remote
 control. Refer to page 176 for details. |
| USB - CDC | It indicates USB - CDC interface is
 activated. Refer to page 180 for details. |
| It indicates USB - TMC interface is | |
| activated. Refer to page 180 for details. | |

Internal memory	
overflowed	It indicates the internal memory for scan data has reached 100,000 readings. And therefore the oldest readings will be replaced by the new readings.
Flash Drive -	
Save Reading	
It indicates the USB disk is ready to save	
log file including Capture and Scan Data.	

Set Up

Horizontal/Tilt/Vertical Applications

Pull out the handle sideways and rotate it clockwise for the applications below.

Horizontal

Place the unit horizontally.

Tilt

Rotate the handle for tilt stand.

Vertical

Place the handle vertically for hand carry.

Power Up

1. Ensure the correct line voltage is clearly shown on the fuse socket (240 V in the right figure for example). If not, see page 333 to set the proper line voltage and fuse.

2. Connect the power cord to the AC Voltage input.

Make sure the ground connector on the power cord is connected to a safety ground. This will affect the measurement accuracy.
3. Push the power button until click to turn on the main power switch on the front panel.

4. The screen firstly shows the logo brand of GWINSTEK followed by the message "Load the Parameter [Last] is Ok" indicating the previous parameter is loaded in the initial startup.

LOC[TMC]	Log		
S1) -	NONE Isa - ?		(63) 20CH: Solid MuX
STOP	Next Sweep :--------Scan Count : $\quad 3$		Start Time: 202210907 18:35:49
TrigSource: Sweeps Log to USE:	Settina		301
	Load the Parameter[Last] is		
	On Logofrows:	65k	
	Total Channels: 005		
Log PARA Capture :	FileName Name Default $=$ Time		Capture

Module overview

Modules List 24
Module Installation 25
Module Uninstallation 26
Modules Introduction 26
DAQ-900 20-Channel Solid-state multiplexer 27
DAQ-901 20-Channel Armature multiplexer 28
DAQ-902 16-Channel Reed Multiplexer 29
DAQ-903 40-Channel Single-Ended Multiplexer 30
DAQ-904 4×8 Two-Wire Matrix Switch 31
DAQ-909 8-Channel High Voltage Multiplexer 32

Modules List

Background The DAQ-9600 is available for a series of plug-in modules to provide user with measurements, switching as well as control capabilities. Each module owns specific microprocessor, which efficiently shares loading from the processor of mainframe and thus lessens, in order to faster throughput, backplane communications. There are up to 6 dfferent plug-in modules available for DAQ-9600. See the detailed info with spec below.

- DAQ-900 20-Channel Solid-state multiplexer
- DAQ-901 20-Channel Armature multiplexer
- DAQ-902 16-Channel reed multiplexer
- DAQ-903 40-Channel single-ended multiplexer
- DAQ-904 4×8 Two-wire matrix switch
- DAQ-909 8-Channel high voltage multiplexer

Model description	Type	Speed (ch/sec)	Max volts	Max amps	Bandwidth	Thermal offset	Comments
DAQ-900 20 ch Multiplexer	2-wire armature (4-wire selectable)	450	120 V		10 MHz	< $4 \mu \mathrm{~V}$	Built-in cold junction reference
DAQ-901 20 ch Multiplexer + 2 current channels	2-wire solid-state (4-wire selectable)	80	300 V	1 A	10 MHz	< $4 \mu \mathrm{~V}$	Built-in cold junction reference 2 additional current channels (22 total)
DAQ-902 16 ch Multiplexer	2-wire reed (4-wire selectable)	250	300 V		10 MHz	< $4 \mu \mathrm{~V}$	Built-in cold junction reference
$\begin{aligned} & \text { DAQ-903 } \\ & 40 \text { ch } \\ & \text { Single-Ended Mux } \end{aligned}$	1-wire armature (common low)	100	300 V		10 MHz	$<1 \mu \mathrm{~V}$	Built-in cold junction reference No four-wire measurements
DAQ-904 4×8 Matrix	2-wire armature	120	300 V		10 MHz	$<1 \mu \mathrm{~V}$	
DAQ-909 8 ch HV Multiplexer +2 current channels	2-wire armature (4-wire selectable)	80	600 V	2 A	10 MHz	$0 \mu \mathrm{~V}$	Built-in cold junction reference 2 additional current channels (10 total)

Module Installation

Background Follow the steps below for how to connect wire to a module and install it to a slot from the rear panel of DAQ-9600 unit.

Steps

1. Use a Phillips-head screwdriver to loose the screw from the top of a module followed by taking away the upper cover from module.

2. With help of a Phillips-head screwdriver, connect the wire to the terminal followed by routing the wire to the end port of module.

3. Restore the upper cover back to the module followed by fastening the screw by a Phillips-head screwdriver.

4. Insert the module into one of the module slots from the rear panel of DAQ-9600 unit.

Module Uninstallation

Background Follow the step below for how to uninstall a module out of a slot on rear panel of DAQ-9600 unit.

Step

1. First push inward the clip at the rear-left corner of a module followed by pulling module out from a slot on rear panel of DAQ-9600 unit.

To install/uninstall the modules from the slots of rear panel in the midst of power on will reboot the DAQ-9600 unit.

Modules Introduction

Background This subchapter introduces each plug-in module with block diagram and schematics available for DAQ-9600 unit.

DAQ-900 20-Channel Solid-state multiplexer

Background Partitioned into 2 banks and each bank consists of 10 two- wire channels, this module has up to 20 channels, which switch both Hi and Lo inputs, and it offers fully isolated inputs to an external device or to the internal DMM. Channels of bank A are paired with channels of bank B automatically, in the midst of four-wire resistance measurements, to offer the source and sense connections. In addition, this modeul can minimize errors, which result from thermal gradients when measurement, by the built-in thermocouple referencre junction.

Block
Diagram

- Always utilize only wire which is rated for the highest voltage so as to avoid electrical shock. Prior to removing a cover of module, all power to external devices which are connected to the module should be turned off.
- It is strongly suggested that when multiplexing multiple sources, in order to prevent multiple signal sources from interconnected one another, the sources are supposed to be connected on separate banks of the identical module or simply on separate modules.
- When a hazarfous voltage source is connected to any channel of the module, both the unit and DUT (Device Under Test) are supposed to be supervised with conforming to the local EHS (Environment, Health and Safety) practices.

DAQ-901 20-Channel Armature multiplexer

Background Partitioned into 2 banks and each bank consists of 10 two- wire channels, this module has two additional fused channels to make direct and calibrated AC or DC current measurement with internal DMM. The 22 channels in total, which switch both Hi and Lo inputs, offer fully isolated inputs to an external device or to the internal DMM. Channels of bank A are paired with channels of bank B automatically, in the midst of four-wire resistance measurements, to offer the source and sense connections. In addition, this modeul can minimize errors, which result from thermal gradients when measurement, by the built-in thermocouple referencre junction.

Block

Diagram

Note

- Because one of the two channels (21 and 22) will be closed when the other one is connected, be sure to connect one of the channels (21 or 22) to the internal DMM or COM at a time.
- Always utilize only wire which is rated for the highest voltage so as to avoid electrical shock. Prior to removing a cover of module, all power to external devices which are connected to the module should be turned off.
- It is strongly suggested that when multiplexing multiple sources, in order to prevent multiple signal sources from interconnected one another, the sources are supposed to be connected on separate banks of the identical module or simply on separate modules.
- When a hazarfous voltage source is connected to any channel of the module, both the unit and DUT (Device Under Test) are supposed to be supervised with conforming to the local EHS (Environment, Health and Safety) practices.

DAQ-902 16-Channel Reed Multiplexer

Background Partitioned into 2 banks and each bank consists of 8 two-wire channels, this module is suitable for applications which are in demand of high-throughput automated test or high-speed scanning. This module has up to 16 channels, which switch both Hi and Lo inputs, therefore offering fully isolated inputs to an external device or to the internal DMM. Channels of bank A are paired with channels of bank B automatically, in the midst of four-wire resistance measurements, to offer the source and sense connections. In addition, this modeul can minimize errors, which result from thermal gradients when measurement, by the built-in thermocouple referencre junction.

Block

Diagram

- When executing current measurements, external shunt resistors are required by this module.
- Always utilize only wire which is rated for the highest voltage so as to avoid electrical shock. Prior to removing a cover of module, all power to external devices which are connected to the module should be turned off.
- It is strongly suggested that when multiplexing multiple sources, in order to prevent multiple signal sources from interconnected one another, the sources are supposed to be connected on separate banks of the identical module or simply on separate modules.
- When a hazarfous voltage source is connected to any channel of the module, both the unit and DUT (Device Under Test) are supposed to be supervised with conforming to the local EHS (Environment, Health and Safety) practices.

DAQ-903 40-Channel Single-Ended Multiplexer

Background This module is partitioned into 2 banks and each bank consists of 20 channels. The all 40 channels, with a common Lo for the module, switch Hi only. This module is suitable for applications of high-density switching which are in demand of, with a common Lo, single-wire inputs.

Block
Diagram

- This module is not allowed to measure 4 -wire or current measurements directly.
- One channel can be closed at one time only, and shutting a channel will thus open the formerly closed channel.
- Always utilize only wire which is rated for the highest voltage so as to avoid electrical shock. Prior to removing a cover of module, all power to external devices which are connected to the module should be turned off.
- It is strongly suggested that when multiplexing multiple sources, in order to prevent multiple signal sources from interconnected one another, the sources are supposed to be connected on separate banks of the identical module or simply on separate modules.
- When a hazarfous voltage source is connected to any channel of the module, both the unit and DUT (Device Under Test) are supposed to be supervised with conforming to the local EHS (Environment, Health and Safety) practices.

DAQ-904 4 x 8 Two-Wire Matrix Switch

Background Organized in a 8-column by 4-row configuration, this module consists of 32 two-wire crosspoints. By connecting columns and rows between multiple modules, it is available to build larger matrices with up to 96 crosspoints within a mainframe. Also, user can utilize this module to connect to multiple instruments to multiple points or to any hybrid of outputs and inputs on DUT simultaneously. Since this module is not allowed to connect to the internal DMM, each relay of crosspoint owns an unique channel lable which represents the column and row. Take the diagram below for instance, the channels 32 stands for the crosspoint between the row 3 and column 2 .

Block

Diagram

- It is available to close multiple channels on this module simultaneously.
- Always utilize only wire which is rated for the highest voltage so as to avoid electrical shock. Prior to removing a cover of module, all power to external devices which are connected to the module should be turned off.
- It is strongly suggested that when multiplexing multiple sources, in order to prevent multiple signal sources from interconnected one another, the sources are supposed to be connected on separate banks of the identical module or simply on separate modules.
- When a hazarfous voltage source is connected to any channel of the module, both the unit and DUT (Device Under Test) are supposed to be supervised with conforming to the local EHS (Environment, Health and Safety) practices.

DAQ-909 8-Channel High Voltage Multiplexer

Background Partitioned into 2 banks and each bank consists of 4 two- wire channels, this module has two additional fused channels to make direct and calibrated AC or DC current measurement with internal DMM. The 10 channels in total, which switch both Hi and Lo inputs, offer fully isolated inputs to an external device or to the internal DMM. Channels of bank A are paired with channels of bank B automatically, in the midst of four-wire resistance measurements, to offer the source and sense connections.

Block

 Diagram

- Because one of the two channels (09 and 10) will be closed when the other one is connected, be sure to connect one of the channels (09 or 10) to the internal DMM or COM at a time.
- It is required to utilize external parallel resistor when executing current measurement from channel 01 to 10 .
- Always utilize only wire which is rated for the highest voltage so as to avoid electrical shock. Prior to removing a cover of module, all power to external devices which are connected to the module should be turned off.
- It is strongly suggested that when multiplexing multiple sources, in order to prevent multiple signal sources from interconnected one another, the sources are supposed to be connected on separate banks of the identical module or simply on separate modules.
- When a hazarfous voltage source is connected to any channel of the module, both the unit and DUT (Device Under Test) are supposed to be supervised with conforming to the local EHS (Environment, Health and Safety) practices.

Operation menus

Home
ESC
\qquad
Monitor Mode37
Display - Number 38
Display - Bar Meter 39
Display - Trend Chart 40
Display - Histogram 44
Scan Mode 47
Scan Mode with Monitor Mode simultaneously 49

Home Mode

Module Display	It includes module slot number and module name as well as total channels of each module. Up to 3 installed modules can be displayed.
Scan Display	The status of Scan mode relevant info. Refer to page 129 for details of the Scan menu.
Channel	The upper indicates current channel number and
\& Alarm	module name with measure type info. Use knob Display key or arrow keys to navigate channels. The lower indicates alarm related info in which up to 4 alarms are displayed in red if triggered. And the triggered alarm of Hi and Low limits are shown in half by each (upper half \& lower half) for every alarm outputs. Also, the total activated channels number is read below within this section.

Setting Few basic settings including "Interval" (page 89)
Display and "Log" (page 128) are displayed here.
Function The operable function keys are available for user to Keys configure several functions. Refer to the following section for more details.

F1 (AlarmOut) Alarm - Latch: key to set up Mode alarm mode relevant settings

- Track:
clear the alarm manually.

The triggered alarm output is automatically cleared when a measured reading is within limits.

Alarm - Pos:
Out
All 4 alarm output lines are configured to indicate alarm at 3.3 V .

- Neg:

All 4 alarm output lines are configured to indicate alarm at 0 V .

Alarm - Alarm1 ~ 4:
Clear Clears alarm state of a selected alarm output line.

- All:

Clears alarm states of all 4 alarm output lines.

F4 (Digit) key to Auto The maximum digit numbers vary by the applied define the maximum digit numbers for measurement measuring functions and refresh rates automatically.
$61 / 2 \quad$ The maximum digit numbers is fixed in $61 / 2$ display.

```
004.1081
```

mVAC
$51 / 2 \quad$ The maximum digit numbers is fixed in $5 \frac{1}{2}$ display.
004.106
mVAC
$41 / 2 \quad$ The maximum digit numbers is fixed in $4 \frac{1}{2}$ display.
004.10
mVAC
Digit
Selection

	Digit				(ESC):Return ($) ~$
Auto	$61 / 2$	$51 / 2$	$41 / 2$		

F5 (Strain) key If user configures channel(s) for strain measurement, Strain to set up Offset Offset is available for calculating strain measurement. value for Strain measurement Select Press to launch strain channel list where available channel(s) set in strain measure are shown for select. Use knob key to navigate channels followed by pressing Select or SelectAll to confirm channels. Press Cancel or ClearAll to deselect channels. Press $O K$ to confirm selection. Press Exit to leave the page without saving the selection.

Get Press to to get offset value(s) for selected Offset channel(s) immediately. The offset values are displayed for each selected channel accordingly.

Clear Press to clear the offset value(s) of selected channel(s). The offset value(s) on the list are returned to 0 instantly after execution.

Strain Offset			
Select	Get Offset:Return $($ Clear		

Monitor Mode

Background Press the Monitor key on the front panel to launch the monitor function to see real-time measured reading on a select channel. When the Scan mode is activated with Monitor mode simultaneously, the measured reading on a select channel is updated only when the select channel being scanned by a sweep within a scan course. Press the Monitor key again to exit monitor mode. Refer to the diagram below for details.

Monitor Menu
Diagram

Monitor The status icon along with menu identification Icon indicates the Monitor mode is underway.

Select Use knob or arrow keys to navigate channels. The Channel select channel number along with affiliated configurations are displayed here.

Measured The real-time measured reading of select channel Reading is shown within this section.

Function The operable function keys are available for user to
Keys configure several Display modes. Refer to the following subchapters for more details.

Display - Number

F1 (Display) key Number to enter Number display

The screen shows the Number mode for reading display. And the maximum digits for number display depend on the Digit configuration.

- Restart:

Identical to the Restart key in trend chart and histogram, it is particularly available for Number display when STAT of MathDisp is activated. The relevant STAT values will be remeasured once user presses the Restart key. Refer to page 111 for details of STAT in Math chapter.

Display - Bar Meter

F1 (Display) key Bar to enter Bar Meter
Meter display

The screen shows Bar Meter display in lower section along with Number display in top for reading display. And the maximum digits for Number display depend on the Digit configuration.

- Scale - Normal:

It allows the scale of bar meter to be symmetric with the selected range of measurement.

- Scale - Manual:

It allows the scale of bar meter to be customized in varied range of scale.

LowHigh for Method

When LowHigh is selected, it is available to further determine the exact scales for both the high and low ends on the bar meter display.

Center for Method

When Center is selected, it is available to further determine the exact Center value and the Span
Scale for the meter bar display.

Display - Trend Chart

Function Keys

 in Display Trend Chart| Display | VScale
 Normal
 IrendChartz | HScale
 Count | Stop\&Vient | ReStart |
| :--- | :--- | :--- | :--- | :--- |

F1 (Display) key Trend to enter Trend Chart Chart display

The screen shows Trend Chart display in lower along with Number display in top for reading display. And the maximum digits for Number display depend on the Digit configuration.

- VScale - Normal:

It allows the vertical scale of trend chart to be symmetric with set range of measurement.

The set range

- VScale - Manual:

It allows the vertical scale of trend chart to be customized in varied range.

L \& H for Manual

After L and H are set up individually, the vertical upper and lower ranges are corresponding to the set values accordingly.

Auto(Once) for Manual
After Auto(Once) is pressed, the vertical upper and lower ranges are automatically defined in accord with the latest 400 counts of measurement from the trend chart.

- HScale - Count:

The horizontal scale of trend chart is symmetric with the set speed of measurement. For example, setting $50 / \mathrm{s}$ results in a faster horizontal trend speed, whilst $1 / \mathrm{s}$ leads to a slower horizontal trend speed.

- Stop\&View - Range:

Press Stoped iew key to stop measurement and view detailed info on the trend chart. Press Range key followed by scrolling Knob key rightward or leftward to move cursors on different sections.

Green The total counts of measurements
Sect. before entering the Stop\&View.
Yellow Press the Knob key to change the
Sect. maximum counts moving by scrolling knob key per time.

1 pixel - 40 pixels - 400 pixels
Orange The lowest value of the selected count with
Sect. its affiliated serial number and time stamp.
Blue The highest value of the selected count with
Sect. its affiliated serial number and time stamp.
White The delta between the highest and
Sect. lowest values of the selected count with its affiliated serial number.

Purple The horizontal scale of measurements
Sect. displayed is fixed in the 400 counts
Red It indicates the counts of moving range
Sect. by scrolling Knob key rightward or leftward to differenct section per time. Based on the Yellow Sect., when 400 pixels is defined, scroll the Knob key once, the scale increases or decreases 400 counts per time.

- Stop\&View - Cursor 1 \& Cursor 2:

Press Stope V iew key to stop measurement and view the lowest and highest values of each count on the trend chart. Scroll Knob key rightward or leftward to move cursors on different sections.

White The total counts of measurements
Sect. before entering the Stop\&View.
Green Press the Cursor1 for checking the
Sect. lowest value of each count.
Blue Press the Cursor2 for checking the
Sect. highest value of each count.
Red The lowest value of the selected count with
Sect. its affiliated serial number and time stamp.
Purple The highest value of the selected count with
Sect. its affiliated serial number and time stamp.
Yellow Press the Knob key to change the
Sect. maximum counts moving by scrolling knob key per time.
1 pixel - 10 pixels -20 pixels
Orange The delta between the highest and
Sect. lowest values of the selected count with its affiliated serial number.

- Strat/Restart:

After entering the Stop\&View, the measured reading in trend chart is suspended. Press the Start key to restart reading in trend chart.

Display - Histogram

Function Keys

in Display -
Histogram

Display	Bins	HScale Histogramz	Stop\&Vien	ReStart

F1 (Display) key to enter Histogr am

 Histogram displayThe screen shows the Histogram display in lower along with Number display in top for reading display. And the maximum digits for Number display depend on the Digit configuration.

- Bins - 100:

Up to 100 strip-like bins, which represents the measured counts, can be seen in histogram display.

Green It indicates the total measured bins
Sect. accumulated currently.
Red It indicates bins of the highest section
Sect. of measured values with its affiliated percentage from the total counts of measurements.

Yellow The currently measured reading in
Sect. number mode.
Purple The histogram display for the measured
Sect. bins. Up to the 100 latest bins can be shown concurrently.

Blue The maximum bin numbers displayed
Sect. within the purple section.
Orange The range of horizontal scale of
Sect. histogram display.

- Hscale - Auto:

The horizontal scale of histogram is symmetric with the set speed of measurement. For example, setting $50 / \mathrm{s}$ results in a faster horizontal histogram speed, whilst $1 / \mathrm{s}$ leads to a slower horizontal histogram speed.

- HScale - Manual:

It allows the horizontal scale of histogram to be customized in varied sections.

L \& H for Manual

After L and H are set up individually, the horizontal left and right scales are corresponding to the set L and H values accordingly.

Auto(Once) for Manual
After Auto(Once) is pressed, the horizontal left and right scales are automatically defined in accord with the latest bins of measurement from the histogram.

- Stop\&View - Class:

Press Stoped iew key to stop measurement and view detailed info on the histogram. Scroll the Knob key rightward or leftward to move cursors on different bins.

Green It indicates the selected bin number.
Sect. Scroll the knob key right or left to change bin number for checking.

Yellow It indicates the total accumulated
Sect. counts of measurement.
Orange It indicates the exact percentage of the
Sect. total counts of measurement from the selected bin number.

Purple It indicates the lowest value being
Sect. measured within the selected bin number.
Blue It indicates the highest value being
Sect. measured within the selected bin number.
White It indicates the difference in value
Sect. between the highest and lowest values.

- Strat/Restart:

After entering the Stop\&View, the measured reading in histogram is suspended. Press the Start key to restart reading in histogram.

Scan Mode

Background Press the Scan key on the front panel to initiate the scan function. During a scan course, DAQ-9600 scans available channels whose measurement functions are configured previously. Also, the Computer channels (401-420), whose computed formula are configured previously, will be scanned by DAQ-9600 in a scan course as well. Refer to page 85 for details of Computer channels.
For those channels whose measurement functions are Not configured previously, the Scan mode will skip them from a scan course. DAQ-9600 scans available channels from slot 1 to slot 3 followed by Computer channels (401-420). A scan course consists of user-defined sweep(s) and a sweep indicates one pass through the available channels.
There are up to 100,000 readings data with time stamp stored in memory during a scan course. All readings data from the previous scan course will be cleared automatically in memory once user starts a new scan course.

In order to stop a scan course, press and hold the Scan key for 1 second and scan will be halted instantly.

Scan Mode
Diagram

In essence, the Scan mode display is almost identical to that of Home mode. Refer to page 34 for description of Home Mode diagram if necessary. And here we put emphasis on the introduction of relevant info of Scan Display.

Function Key

	Scan Display	START /STOP
		The status becomes START after user presses Scan key. And it turns STOP after a scan course is completed or after user presses and holds Scan key for 1 second.

Scan Mode with Monitor Mode simultaneously

Description It is available for user to activate both Scan mode and Monitor mode at the same time. When Scan mode is activated with Monitor mode simultaneously, the measured reading on a select channel is updated once only when the select channel is being scanned by a sweep within a scan course.

Also, similar to the Monitor mode, it is available to navigate channels via using knob or arrow keys to watch the updated measured reading of each channel.

Scan \& When the select channel hasn't been scanned from the 1st
Monitor sweep, it reads no measured reading on the display.
mode
Diagram

When the select channel is being scanned from a sweep within a scan course, measured reading will be displayed and be updated again only when being scanned again in the next sweep.

ONFIGURATION MENUS

7

Channel Menu 51
DCV/ACV Measurement 53
Temperature Measurement 57
Strain Measurement 65
2-Wire \& 4-Wire Resistance Measurement 76
Frequency/Period Measurement 78
Diode Measurement 79
Capacitance Measurement 80
DCI/ACI Measurement 81
Switch Mode for Channels 83
Computer Channels 85
Basic Math 86
Statistics 87
Polynomial 5TH 88
Interval Menu 89
Edit Menu 92
Copy Channels 93
Alarm Menu 95
Alarm Configuration 96
View Menu 98
Data View 98
Alarm View 106
Error View 107
Relay Cycle View 108
Module Menu 109
Math Menu 111
dBm Measurement 111
dB Measurement 114
MX+B Measurement 117
1/X Measurement 120
Percent Measurement 123
Average Menu 126
Log Menu 128

Channel Menu

Background Press the Channel key on the front panel to enter the Channel menu in which various measurements
 can be selected for each channel from slots modules. Refer to the diagram below for details.

Function Keys
Module It includes module slot number and module name
Display as well as total channels of each module. Up to 3 installed modules can be displayed.

Channel The select channel number along with channel Display name are shown here.

Measure The parameters settings for each measurement of Setting select channel are displayed. The available settings Display vary in accord with each measurement.

Math, Math function setting for select channel is Average \& displayed. See page 111 for details of Math.
Alarm Average Count \& Window setting for select channel
Display is displayed. See page 126 for details of Average. Alarm Hi \& Lo limits setting for select channel is displayed. See page 95 for details of Alarm.
Press knob key to toggle between AVG and Alarm setting display.

Function The operable function keys are available for user to Keys configure measurements of each channel. Refer to the following section for more details.

Channel						
Function Keys				$\text { Auto }=$		ore 1/2

Selection

F1 (Channel) key to select a channel

Press the F1 key to select a channel. Use either numerical keypad or rotate knob key to confirm selection. Also, it is available directly rotate knob key from Channel display to navigate channels.

Channel	?	$30 \mid 1$	-1	$-\quad$ ESC):Return(3)

F2 (Lable) key to name a channel

Press the F2 key to launch the keyboard in which user rotates knob key to select characters followed by clicking

F3 (Measure) key to configure measurement

Input to confirm selection. Press $O K$ to save whilst press Exit KeyB to exit without saving. Caps Lock toggles characters between high and low case. And Backspace simply moves cursor backwards with deleting character.

Measurement part contains several types of measurements with complicated settings and we will introduce in the following subchapters in details.

DCV/ACV Measurement

Description F3 (Measure) key to select ACV or DCV	The DC and AC voltage measurements configurations.				
	DCV				
	Channel 301	Label Measure EDIT DCV	$\begin{aligned} & \text { Range } \\ & \text { Auto } \end{aligned}$	$\begin{aligned} & \text { Speed } \\ & \text { 60/s } \end{aligned}$	More 1/2,
	ACV				
	Channel 302	Label Measure EDIT $=$ ACV z	$\begin{aligned} & \text { Range } \\ & \text { Auto } \end{aligned}$	Speed 501's $=$	More 1/2,
Voltage source and module terminals connection	H	\int_{-}^{+}			

F4 (Range) key to Press the key to enter Range menu and select a target select ragne for ACV and DCV range for ACV and DCV measurements individually. The Auto indicates a range, which is based on the source input, is selected automatically. It is sometimes results in, compared with manual select range, slower measurement. Also, using the Range keys can select range promptly.

F5 (Speed) key to Press the key to enter Speed menu and select a target select speed for
ACV and DCV speed for ACV and DCV measurements individually. Also, using the Arrow keys can select speed promptly.

F6 (More 1/2) key Press the key to enter the next page (More 2/2) of more to enter next functions configurations for measurement. function keys page

Function Keys in More 2/2 page

DCV

ACV

| | | | Delay
 Auto |
| :--- | :--- | :--- | :--- | :--- |

Auto Zero (F1) key	By turning On Auto Zero, the most accurate to set Auto Zero measurements is provided, but it requires extra time to (DCV only)
execute the zero measurement. With autozero On, DAQ- 9600 internally measures the offset following each measurement. It then subtracts that measurement from the preceding reading. This prevents offset voltages present on the DAQ-9600 input circuitry from affecting measurement accuracy. With autozero Off, DAQ-9600 measures offset once and subtracts the offset from all subsequent measurements.	

Input R (F2) key to It specifies the measurement terminal input impedance, to select input resistance (DCV only) which is $10 \mathrm{M} \Omega$ or Auto. The Auto mode selects high impedance (Hi-Z) for the $100 \mathrm{mV}, 1 \mathrm{~V}$ and 10 V ranges, and $10 \mathrm{M} \Omega$ for the 100 V and 1000 V ranges. In most situations, $10 \mathrm{M} \Omega$ is high enough to not load most circuits, but low enough to make readings stable for high impedance circuits. It also leads to readings with less noise than the (Hi-Z) option, which is included for situations where the $10 \mathrm{M} \Omega$ load is significant.

Delay (F5) key to to User defines a delay time to be inserted between the select a delay time actual measurement on each channel from a scan course.

Voltage Conversion Table

Background This table shows the relationship between AC and DC reading in various waveforms.

Waveform	Peak to Peak	AC (True RMS)	DC
Sine	2.828	1.000	0.000
Rectified Sine (full wave)	1.414	0.435	0.900

Rectified Sine (half wave)	2.000	0.771	0.636

$\bigcirc \widehat{\widehat{Y} K-P K}$	2.000	1.000	0.000
Square			
$\sqrt{\sqrt{P K-P K}}$			
Rectified	1.414	0.707	0.707

Square

Rectangular Pulse	2.000	2 K	2 D
$\mathrm{X} \longrightarrow$ $\leftarrow \mathrm{Y} \rightarrow$ $\mathrm{PK}-\mathrm{PK}$		$\mathrm{K}=\sqrt{\left(D-D^{2)}\right.}$ $\mathrm{D}=\mathrm{X} / \mathrm{Y}$	$\mathrm{D}=\mathrm{X} / \mathrm{Y}$

$\wedge_{\sqrt{ } \sqrt{\text { PK-PK }}}$

Crest Factor Table

Background Crest factor is the ratio of the peak signal amplitude to the RMS value of the signal. It determines the accuracy of AC measurement. If the crest factor is less than 3.0, voltage measurement will not result in error due to dynamic range limitations at full scale. If the crest factor is more than 3.0, it usually indicates an abnormal waveform as seen from the below table.

Waveform	Shape	Crest factor
Square wave	\square	1.0

Sine wave

1.414
Triangle
sawtooth

Mixed
frequencies

SCR output
$100 \% \sim 10 \%$

White noise

AC Coupled pulse train	>3.0
Spike	\longrightarrow

Temperature Measurement

F5 (Speed) key to select speed

Press the key to enter Speed menu and select a target speed temperature measurements. Also, using the Arrow keys can select speed promptly.

F6 (More 1/3) key to enter next function keys page

Press the key to enter the next page (More 2/3) of more functions configurations for measurement.

Function Keys in More 2/3 page	Auto Zero Unit Type Simulated Fix Value On Off ${ }^{\circ} \mathrm{C}$ More 23
Auto Zero (F1) key to set Auto Zero	By turning On Auto Zero, the most accurate measurements is provided, but it requires extra time to execute the zero measurement. With autozero On, DAQ-9600 internally measures the offset following each measurement. It then subtracts that measurement from the preceding reading. This prevents offset voltages present on the DAQ-9600 input circuitry from affecting measurement accuracy. With autozero Off, DAQ-9600 measures offset once and subtracts the offset from all subsequent measurements.

Unit (F2) key to Press the key to enter the Temperature Unit menu set temperature followed by setting temperature measurement unit as ${ }^{\circ} \mathrm{C}$ unit (Celsius), ${ }^{\circ} \mathrm{F}$ (Fahrenheit), or ${ }^{\circ} \mathrm{K}$.

Type (F3) key to Press the key to enter the sensor Type menu followed by specify a sensor specifying sensor type as J, K, N, R, S, T, B, or E. type

Simulated (F4) key Press the key to enter the Simulated Method Setup menu to set up
simulated method
followed by selecting Auto, Fixed or External for the so-called "Reference Junction Temperature".

Fix Value (F5) key
for Fixed of simulated method for External of simulated method

Ref CH (F5) key When "External" is selected for Simulated, press F5 key
When "Fixed" is selected for Simulated, press F5 key to further configure a Fix Value. to further select a reference channel from the list.

F6 (More 2/3) key Press the key to enter the next page (More 3/3) of more to enter next functions configurations for measurement.
function keys page
Function Keys in
More $3 / 3$ page
ADJ (F1) key to set When "Auto" is selected for Simulated, press F1 key to Auto SIM Offset further define an Offset value for Auto SIM.

Delay (F5) key to to User defines a delay time to be inserted between the select a delay time actual measurement on each channel from a scan course.

Thermocouple Sensor Type

Background	The instrument accepts thermocouple inputs and calculates the temperature from the voltage difference of two dissimilar metals. Thermocouple sensor type is one of the main factors to be considered.		
Parameter	Thermocouple Sensor Type	Measurement Range	Resolution

Reference Junction Temperature (SIM Temperature)

Background When a thermocouple is connected to the DAQ-9600, the
(Thermocouple only)
temperature difference between the thermocouple lead and the DAQ-9600 input terminal should be taken into account and be cancelled out; otherwise an erroneous temperature might be added. The value of the reference junction temperature should be determined by the user.

Type	Range	Resolution
SIM	$-20^{\circ} \mathrm{C} \sim+80^{\circ} \mathrm{C}$	$0.01^{\circ} \mathrm{C}$
(simulated)		

The terminal temperature is manually defined by user.
Default value: Auto

Thermistor 2W/4W Setting

F3 (Measure) key to select TEMP	TEMP			
	Channel Label 201 EDIT	Measure TEMP	Probe Speed Them2Wl $=$ $601 \mathrm{~s}=$	More 1/3
F4 (Probe) key to select Them2W or Them4W	Them2W			
	Channel 201	Measure TEMP	Probe Speed Them2W: $601 \mathrm{~s}=$	More 1/3
	Them4W			
	$\begin{array}{c\|} \hline \text { Channel } \\ 201 \end{array}$	$\begin{array}{\|c\|} \hline \text { Measure } \\ \text { TEMP }= \\ \hline \end{array}$	Probe Speed Themalv: $=$ $60 / \mathrm{s}=$	More 1/3
Thermistor and module terminals connection	Therm2W T		Therm4W	
Parameter	Type	Range	Resolution	
	All	$-80 \sim 150^{\circ}$	$0^{\circ} \mathrm{C} \quad 0.001^{\circ}$	$0.001{ }^{\circ} \mathrm{C}$

F5 (Speed) key to Press the key to enter Speed menu and select a target select speed speed temperature measurements. Also, using the Arrow keys can select speed promptly.

F6 (More $1 / 3$) key Press the key to enter the next page (More $2 / 3$) of more to enter next functions configurations for measurement.
function keys page
Function Keys in
More 2/3 page

Auto Zero	Unit	Type	User Type	Use as Ref	More 2/3
On	Off	${ }^{\circ} \mathrm{C}$	User	Setup z	On (Off

Auto Zero (F1) key By turning On Auto Zero, the most accurate to set Auto Zero measurements is provided, but it requires extra time to execute the zero measurement. With autozero On, DAQ-9600 internally measures the offset following each measurement. It then subtracts that measurement from the preceding reading. This prevents offset voltages present on the DAQ-9600 input circuitry from affecting measurement accuracy. With autozero Off, DAQ-9600 measures offset once and subtracts the offset from all subsequent measurements.

Unit (F2) key to Press the key to enter the Temperature Unit menu set temperature followed by setting temperature measurement unit as ${ }^{\circ} \mathrm{C}$ unit (Celsius), ${ }^{\circ} \mathrm{F}$ (Fahrenheit), or ${ }^{\circ} \mathrm{K}$.

Type (F3) key to Press the key to enter the sensor Type menu followed by specify a sensor specifying sensor type as $2.2 \mathrm{k} \Omega, 5 \mathrm{k} \Omega, 10 \mathrm{k} \Omega$ or User type type.

User Type (F4) key When "User" is selected for Type, press F4 key to to set up User further customize A, B and C coefficients individually as Type coefficients defined by the Steinhart-Hart equation.

Type A Coefficient	B	C	
2.2 k	0.0014733	0.0002372	$1.07 \mathrm{E}-07$
5 k	0.0012880	0.0002356	$9.56 \mathrm{E}-08$
10 k	0.0010295	0.0002391	$1.57 \mathrm{E}-07$

Equation

$$
T_{K}=\frac{1}{A+B(\ln R)+C(\ln R)^{3}}
$$

where: ${ }^{T} K$ is the calculated temperature in Kelvin.
In R is the natural log of the measured resistance of the themistor.
A, B and C are the curve fitting constants.
Use as Ref (F5) Enable Use as Ref to make selected channel be used as key to enable the reference channel for subsequent thermocouple measurements that specify an external reference source.

F6 (More 2/3) key Press the key to enter the next page (More 3/3) of more to enter next functions configurations for measurement. function keys page

Function Keys in	PowerLow	Delay
On Office	Auto $=$ More $3 / 3$	

Power Low (F3) key to enable

Selects the low-power resistance measurement, which sources less current resulting in lower power dissipation, and less self-heating, in the resistance under test. Typically, this is about $1 / 10$ th the current sourced for the standard resistance measurements.

Delay (F5) key to to User defines a delay time to be inserted between the select a delay time actual measurement on each channel from a scan course.

RTD 2W/4W Setting
F3 (Measure) key TEMP
to select TEMP

F4 (Probe) key to select RTD 2W or RTD 4W

F5 (Speed) key to Press the key to enter Speed menu and select a target select speed speed temperature measurements. Also, using the Arrow keys can select speed promptly.

F6 (More $1 / 3$) key Press the key to enter the next page (More $2 / 3$) of more to enter next functions configurations for measurement.
function keys page
Function Keys in More 2/3 page

Auto Zero (F1) key By turning On Auto Zero, the most accurate to set Auto Zero measurements is provided, but it requires extra time to execute the zero measurement. With autozero On, DAQ-9600 internally measures the offset following each measurement. It then subtracts that measurement from the preceding reading. This prevents offset voltages present on the DAQ-9600 input circuitry from affecting measurement accuracy. With autozero Off, DAQ-9600 measures offset once and subtracts the offset from all subsequent measurements.

Unit (F2) key to Press the key to enter the Temperature Unit menu set temperature followed by setting temperature measurement unit as ${ }^{\circ} \mathrm{C}$ unit (Celsius), ${ }^{\circ} \mathrm{F}$ (Fahrenheit), or ${ }^{\circ} \mathrm{K}$.

Type (F3) key to specify a sensor type

User Type (F4) key to set up User Type coefficients

Press the key to enter the sensor Type menu followed by specifying sensor type as PT100, D100, F100, PT385, PT3916 or User type.

When "User" is selected for Type, press F4 key to further customize alpha, beta, delta and R0 coefficients individually as defined by the Callendar-Van Dusen equation.

Type	Alpha (α)	Beta (β)	Delta (δ)
Coefficient			
PT100	0.00385	0.10863	1.49990
D100	0.00392	0.10630	1.49710
F100	0.00390	0.11000	1.49589
PT385	0.00385	0.11100	1.50700
PT3916	0.00392	0.11600	1.50594

Equation	$\begin{aligned} & -200^{\circ} \mathrm{C} \\ & \text { to } 0^{\circ} \mathrm{C} \\ & \text { range } \end{aligned}$	$\mathrm{R}_{\mathrm{RTD}}=\mathrm{R}_{0}\left[1+\mathrm{AT}+\mathrm{BT}^{2}+\mathrm{CT}^{3}(\mathrm{~T}-100)\right]$ where: $\mathrm{R}_{\text {RTD }}$ is the calculated resistance of the RTD R_{0} is the known RTD resistance at $0^{\circ} \mathrm{C}$ T is the temperature in ${ }^{\circ} \mathrm{C}$ A = alpha [1+ (delta/100)] $B=-1$ (alpha)(delta)(1e-4) $C=-1$ (alpha)(beta)(1e-8)
	$\begin{aligned} & -0^{\circ} \mathrm{C} \text { to } \\ & 630^{\circ} \mathrm{C} \\ & \text { range } \end{aligned}$	$\mathrm{R}_{\mathrm{RTD}}=\mathrm{R}_{0}\left(1+\mathrm{AT}+\mathrm{BT} T^{2}\right)$ where: $\mathrm{R}_{\text {RTD }}$ is the calculated resistance of the RTD R_{0} is the known RTD resistance at $0^{\circ} \mathrm{C}$ T is the temperature in ${ }^{\circ} \mathrm{C}$ A = alpha [1+ (delta/100)] $B=-1$ (alpha)(delta)(1e-4)

Use as Ref (F5) Enable Use as Ref to make selected channel be used as key to enable the reference channel for subsequent thermocouple measurements that specify an external reference source.

F6 (More 2/3) key Press the key to enter the next page (More 3/3) of more to enter next functions configurations for measurement.
function keys page

Power Low (F3) Selects the low-power resistance measurement, which key to enable sources less current resulting in lower power dissipation, and less self-heating, in the resistance under test.
Typically, this is about $1 / 10$ th the current sourced for the standard resistance measurements.

Delay (F5) key to to User defines a delay time to be inserted between the select a delay time actual measurement on each channel from a scan course.

Strain Measurement

Description The strain measurements configurations. Generally, a body deforms when a force is applied to the body,. The deformation per unit length is the so-called strain. Strain may be either compressive (-) or tensile (+).

DAQ-9600 supports two types of strain measurements which are Bridge and Direct resistive methods.
After configuring strain measurement function for channels, go to Home menu to get the unstrained offset value, which will be subtracted from strain measurements before the strain conversion is executed. Refer to page 36 for details of how to get unstrained offset value.

Full \& Half Bending Bridge Setting

F3 (Measure) key STRAIN
to select STRAIN

Channel	Label	Measure	Range	Speed		
201 =	EDIT	STRAIN	Auto	601s		ore 1/3

Bridge source and module terminals connection

Full Bending Bridge

Half Bending Bridge

F4 (Range) key to select ragne

Press the key to enter Range menu and select a target range for strain measurement. The Auto indicates a range, which is based on the source input, is selected automatically. It is simetimes results in, compared with manual select range, slower measurement. Also, using the Range keys can select range promptly.

F5 (Speed) key to select speed

Press the key to enter Speed menu and select a target speed temperature measurements. Also, using the Arrow keys can select speed promptly.

F6 (More 1/3) key to enter next

Press the key to enter the next page (More 2/3) of more functions configurations for measurement. function keys page

Function Keys in Full Bending Bridge
More 2/3 page

Half Bending Bridge

Auto Zero (F1) key By turning On Auto Zero, the most accurate to set Auto Zero measurements is provided, but it requires extra time to execute the zero measurement. With autozero On, DAQ-9600 internally measures the offset following each measurement. It then subtracts that measurement from the preceding reading. This prevents offset voltages present on the DAQ-9600 input circuitry from affecting measurement accuracy. With autozero Off, DAQ-9600 measures offset once and subtracts the offset from all subsequent measurements.

Sense (F2) key to Press the key to enter the Sense menu followed by select Bridge selecting Bridge for sense.

Config (F3) key to Press the key to enter the Config menu followed by specify Full or Half selecting either Full or Half.

Type (F4) key to Press the key to enter the Type menu followed by select Bending selecting Bending for type.

GageFactor (F5) Gage factor indicates the ratio of fractional change in key to specify a resistance to, along the axis of the gage, the fractional ratio change in length (strain).The more sensitive strain gage, the larger the value. Gage factor itself is a dimensionless quantity with the default value of approximate 2 .

F6 (More 2/3) key Press the key to enter the next page (More $3 / 3$) of more to enter next functions configurations for measurement. function keys page

Excitation (F2) key Strain bridge conversions require the voltage of the external bridge excitation, for which user can designate a multiplexer channel to measure the excitation voltage or can specify a known fixed voltage value.

Fixed (Fix) - The fixed value specified by the excitation voltage will be used for the strain conversion.

External (Ext) - DCV measurements on the enabled reference channel will be used for subsequent strain bridge measurements that specify an external excitation voltage source. Note that the external DCV reference channel must be a lower-numbered channel than the strain channel.

EXCI Volt (F3) key When "Fix" is selected for Excitation, press F3 key to further configure an excitation voltage applied to the bridge by an external voltage source. This value will be used to convert strain bridge measurements on the selected channel.

Ext Chan. (F3) key When "Ext" is selected for Excitation, press F3 key to further select a reference channel from the list.

Delay (F5) key to to select a delay time

User defines a delay time to be inserted between the actual measurement on each channel from a scan course.

Full \& Half Poisson Bridge Setting
F3 (Measure) key STRAIN
to select STRAIN

| Channel | Label | | |
| :---: | :---: | :---: | :---: | :---: |
| $201=$ | Measure | Range | Speed |
| EDIT | STRAIN z | Auto $=$ | $60 / \mathrm{s}=$ | More 1/3

Bridge source and module terminals connection

Full Poisson Bridge

Half Poisson Bridge

F4 (Range) key to select ragne

Press the key to enter Range menu and select a target range for strain measurement. The Auto indicates a range, which is based on the source input, is selected automatically. It is simetimes results in, compared with manual select range, slower measurement. Also, using the Range keys can select range promptly.

F5 (Speed) key to Press the key to enter Speed menu and select a target select speed speed temperature measurements. Also, using the Arrow keys can select speed promptly.

F6 (More $1 / 3$) key Press the key to enter the next page (More 2/3) of more to enter next functions configurations for measurement.
function keys page
Function Keys in Full Poisson Bridge
More 2/3 page

Half Poisson Bridge

Auto Zero (F1) key By turning On Auto Zero, the most accurate to set Auto Zero measurements is provided, but it requires extra time to execute the zero measurement. With autozero On, DAQ-9600 internally measures the offset following each measurement. It then subtracts that measurement from the preceding reading. This prevents offset voltages present on the DAQ-9600 input circuitry from affecting measurement accuracy. With autozero Off, DAQ-9600 measures offset once and subtracts the offset from all subsequent measurements.

Sense (F2) key to Press the key to enter the Sense menu followed by select Bridge selecting Bridge for sense.

Config (F3) key to Press the key to enter the Config menu followed by specify Full or Half selecting either Full or Half.

Type (F4) key to Press the key to enter the Type menu followed by select Poisson selecting Poisson, which is defined as the negative ratio of the strain in the transverse direction to the strain in the longitudinal direction.

GageFactor (F5) Gage factor indicates the ratio of fractional change in key to specify a ratio resistance to, along the axis of the gage, the fractional change in length (strain). The more sensitive strain gage, the larger the value. Gage factor itself is a dimensionless quantity with the default value of approximate 2 .

F6 (More 2/3) key Press the key to enter the next page (More 3/3) of more to enter next functions configurations for measurement. function keys page

Function Keys in More 3/3 page	PoisRatio Excitation EXCI Volt $+0.5000=$ Fix Ext $5.000=$	$\begin{aligned} & \text { Delay } \\ & \text { Auto }=\text { More } 3 / 3 \end{aligned}$
PoisRatio(F1) key	User specifies a Poisson ratio, which is defined as the negative ratio of the strain in the transverse direction to the strain in the longitudinal direction, of the strain gage.	

Excitation (F2) key Strain bridge conversions require the voltage of the external bridge excitation, for which user can designate a multiplexer channel to measure the excitation voltage or can specify a known fixed voltage value.
Fixed (Fix) - The fixed value specified by the excitation voltage will be used for the strain conversion.
External (Ext) - DCV measurements on the enabled reference channel will be used for subsequent strain bridge measurements that specify an external excitation voltage source. Note that the external DCV reference channel must be a lower-numbered channel than the strain channel.

EXCI Volt (F3) key When "Fix" is selected for Excitation, press F3 key to further configure an excitation voltage applied to the bridge by an external voltage source. This value will be used to convert strain bridge measurements on the selected channel.

Ext Chan. (F3) key When "Ext" is selected for Excitation, press F3 key to further select a reference channel from the list.

Delay (F5) key to to User defines a delay time to be inserted between the select a delay time actual measurement on each channel from a scan course.

Full Bending Poisson Bridge Setting

F3 (Measure) key to select STRAIN

STRAIN

Channel 201	Label EDIT	Measure STRAIN	Range Auto	Speed	Hore 1/3

Bridge source and Full Bending Poisson Bridge module terminals connection

F4 (Range) key to Press the key to enter Range menu and select a target select ragne range for strain measurement. The Auto indicates a range, which is based on the source input, is selected automatically. It is simetimes results in, compared with manual select range, slower measurement. Also, using the Range keys can select range promptly.

F5 (Speed) key to Press the key to enter Speed menu and select a target select speed speed temperature measurements. Also, using the Arrow keys can select speed promptly.

F6 (More $1 / 3$) key Press the key to enter the next page (More 2/3) of more to enter next functions configurations for measurement.
function keys page
Function Keys in Full Bending Poisson Bridge

Auto Zero (F1) key By turning On Auto Zero, the most accurate to set Auto Zero measurements is provided, but it requires extra time to execute the zero measurement. With autozero On, DAQ-9600 internally measures the offset following each measurement. It then subtracts that measurement from the preceding reading. This prevents offset voltages present on the DAQ-9600 input circuitry from affecting measurement accuracy. With autozero Off, DAQ-9600 measures offset once and subtracts the offset from all subsequent measurements.

Sense (F2) key to Press the key to enter the Sense menu followed by select Bridge selecting Bridge for sense.

$$
\begin{array}{ll}
\text { Config (F3) key to } & \begin{array}{l}
\text { Press the key to enter the Config menu followed by } \\
\text { specify Full }
\end{array} \\
\text { selecting Full. }
\end{array}
$$

Type (F4) key to Press the key to enter the Type menu followed by select BendPois selecting BendPois for type, which is a combination ratio of Bening and Poisson.

GageFactor (F5) Gage factor indicates the ratio of fractional change in key to specify a resistance to, along the axis of the gage, the fractional ratio change in length (strain). The more sensitive strain gage, the larger the value. Gage factor itself is a dimensionless quantity with the default value of approximate 2 .

F6 (More 2/3) key Press the key to enter the next page (More 3/3) of more to enter next functions configurations for measurement. function keys page

Function Keys in	PoisRatio Excitation	EXCI Volt	Delay	More 313
More 3/3 page	$+0.5000=\mathrm{Fix} \mathrm{Ext}$	$+5.000=1$	Auto	more 313

PoisRatio(F1) key User specifies a Poisson ratio, which is defined as the negative ratio of the strain in the transverse direction to the strain in the longitudinal direction, of the strain gage.

Excitation (F2) key Strain bridge conversions require the voltage of the external bridge excitation, for which user can designate a multiplexer channel to measure the excitation voltage or can specify a known fixed voltage value.

Fixed (Fix) - The fixed value specified by the excitation voltage will be used for the strain conversion.

External (Ext) - DCV measurements on the enabled reference channel will be used for subsequent strain bridge measurements that specify an external excitation voltage source. Note that the external DCV reference channel must be a lower-numbered channel than the strain channel.

EXCI Volt (F3) key When "Fix" is selected for Excitation, press F3 key to further configure an excitation voltage applied to the bridge by an external voltage source. This value will be used to convert strain bridge measurements on the selected channel.

Ext Chan. (F3) key When "Ext" is selected for Excitation, press F3 key to further select a reference channel from the list.

Delay (F5) key to to User defines a delay time to be inserted between the select a delay time actual measurement on each channel from a scan course.

Quarter Bridge Setting

F3 (Measure) key STRAIN

Bridge source and
Quarter Bridge
module terminals
connection

F4 (Range) key to Press the key to enter Range menu and select a target select ragne range for strain measurement. The Auto indicates a range, which is based on the source input, is selected automatically. It is simetimes results in, compared with manual select range, slower measurement. Also, using the Range keys can select range promptly.

F5 (Speed) key to Press the key to enter Speed menu and select a target select speed speed temperature measurements. Also, using the Arrow keys can select speed promptly.

F6 (More $1 / 3$) key Press the key to enter the next page (More $2 / 3$) of more to enter next functions configurations for measurement.
function keys page
Function Keys in Quarter Bridge
More 2/3 page

Auto Zero (F1) key By turning On Auto Zero, the most accurate to set Auto Zero measurements is provided, but it requires extra time to execute the zero measurement. With autozero On, DAQ-9600 internally measures the offset following each measurement. It then subtracts that measurement from the preceding reading. This prevents offset voltages present on the DAQ-9600 input circuitry from affecting measurement accuracy. With autozero Off, DAQ-9600 measures offset once and subtracts the offset from all subsequent measurements.

Sense (F2) key to Press the key to enter the Sense menu followed by select Bridge selecting Bridge for sense.

Config (F3) key to Press the key to enter the Config menu followed by specify Quarter selecting Quarter.

GageFactor (F5) Gage factor indicates the ratio of fractional change in key to specify a resistance to, along the axis of the gage, the fractional ratio change in length (strain).The more sensitive strain gage, the larger the value. Gage factor itself is a dimensionless quantity with the default value of approximate 2 .

F6 (More 2/3) key Press the key to enter the next page (More 3/3) of more to enter next functions configurations for measurement.
function keys page

Function Keys in	$\text { Fix Ext }+5.000=$	Auto	More 3/3

Excitation (F2) key Strain bridge conversions require the voltage of the external bridge excitation, for which user can designate a multiplexer channel to measure the excitation voltage or can specify a known fixed voltage value.
Fixed (Fix) - The fixed value specified by the excitation voltage will be used for the strain conversion.
External (Ext) - DCV measurements on the enabled reference channel will be used for subsequent strain bridge measurements that specify an external excitation voltage source. Note that the external DCV reference channel must be a lower-numbered channel than the strain channel.

EXCI Volt (F3) key When "Fix" is selected for Excitation, press F3 key to further configure an excitation voltage applied to the bridge by an external voltage source. This value will be used to convert strain bridge measurements on the selected channel.

Ext Chan. (F3) key When "Ext" is selected for Excitation, press F3 key to further select a reference channel from the list.

Delay (F5) key to to User defines a delay time to be inserted between the select a delay time actual measurement on each channel from a scan course.

2W \& 4W Direct Setting

```
F3 (Measure) key STRAIN
```

nel					
201	EDIT	$\begin{aligned} & \text { Measure } \\ & \text { STRAIN z } \end{aligned}$	$\begin{aligned} & \text { Range } \\ & \text { Fix } 1 \text { k } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Speed } \\ & \text { ools } \end{aligned}$	More 1/3

Direct source and module terminals connection

2W Direct

4W Direct

F4 (Range) key is Under the either 2 W or 4 W Direct setting, the Range is fixed in Fix $1 \mathrm{k} \Omega \quad$ fixed in Fix $1 \mathrm{k} \Omega$ by default.

F5 (Speed) key to Press the key to enter Speed menu and select a target select speed speed temperature measurements. Also, using the Arrow keys can select speed promptly.

F6 (More $1 / 3$) key Press the key to enter the next page (More 2/3) of more to enter next functions configurations for measurement.
function keys page
Function Keys in
2W Direct

4W Direct

Auto Zero	Sense	Config	GageOhms	Gagefactor		
On Off	Direct =	4-Wire	$120.00=$	$2.000=$		

Auto Zero (F1) key to set Auto Zero	By turning On Auto Zero, the most accurate measurements is provided, but it requires extra time to execute the zero measurement. With autozero On,
	DAQ-9600 internally measures the offset following each measurement. It then subtracts that measurement from the preceding reading. This prevents offset voltages
present on the DAQ-9600 input circuitry from affecting	
measurement accuracy. With autozero Off, DAQ-9600	
measures offset once and subtracts the offset from all	
subsequent measurements.	

Sense (F2) key to Press the key to enter the Sense menu followed by select Direct selecting Direct for sense.

Config (F3) key to Press the key to enter the Config menu followed by specify 2-Wire or selecting either 2-Wire or 4-Wire.
4-Wire
GageOhms (F4) key Press the key to specify Gage resistance, which is used to to specify resistance convert direct strain measurements on selected channel.

GageFactor (F5) Gage factor indicates the ratio of fractional change in key to specify a ratio resistance to, along the axis of the gage, the fractional change in length (strain). The more sensitive strain gage, the larger the value. Gage factor itself is a dimensionless quantity with the default value of approximate 2 .

F6 (More 2/3) key Press the key to enter the next page (More 3/3) of more to enter next functions configurations for measurement. function keys page

| Function Keys in | | PowerLow | Delay |
| :--- | :--- | :--- | :--- | :--- |
| On [0ff | More 3/3 | | |
| More $3 / 3$ page | Auto | | |

PowerLow (F3) key Selects the low-power resistance measurement, which sources less current resulting in lower power dissipation, and less self-heating, in the resistance under test. Typically, this is about $1 / 10$ th the current sourced for the standard resistance measurements.

Delay (F5) key to to User defines a delay time to be inserted between the select a delay time actual measurement on each channel from a scan course.

2-Wire \& 4-Wire Resistance Measurement

Description The resistance measurements configurations. Generally, the 2 -Wire resistance indicates using the standard Input HI-LO terminals and it is recommended for measuring resistances larger than $1 \mathrm{k} \Omega$. And 4 -Wire resistance indicates compensating the test lead effect using the 4 W compensation terminals, in addition to the standard Input HI-LO terminals. Recommended for measuring sensitive resistances smaller than $1 \mathrm{k} \Omega$.

F3 (Measure) key to select 2W OHM or 4W OHM

2W OHM

Resistance source
and module terminals connection

2W OHM

4W OHM

F4 (Range) key to Press the key to enter Range menu and select a target specify range range for 2 W OHM and 4 W OHM measurements individually. The Auto indicates a range, which is based on the source input, is selected automatically. It is simetimes results in, compared with manual select range, slower measurement. Also, using the Range keys can select range promptly.

Selectable Resistance Ranges	Range	Resolution	Full scale
100Ω	$0.1 \mathrm{~m} \Omega$	119.9999Ω	
$1 \mathrm{k} \Omega$	$1 \mathrm{~m} \Omega$	$1.199999 \mathrm{k} \Omega$	

$100 \mathrm{k} \Omega$	$100 \mathrm{~m} \Omega$	$119.9999 \mathrm{k} \Omega$
$1 \mathrm{M} \Omega$	1Ω	$1.199999 \mathrm{M} \Omega$
$10 \mathrm{M} \Omega$	10Ω	$11.99999 \mathrm{M} \Omega$
$100 \mathrm{M} \Omega$	100Ω	$119.9999 \mathrm{M} \Omega$
$1 \mathrm{G} \Omega$	XXX	XXXX

F5 (Speed) key to Press the key to enter Speed menu and select a target select speed speed temperature measurements. Also, using the Arrow keys can select speed promptly.

F6 (More 1/2) key Press the key to enter the next page (More 2/2) of more to enter next functions configurations for measurement. function keys page

Function Keys in More 2/2 page

Auto Zero PowerLow On Off On Off Delay
Auto $=$ More 212

Auto Zero (F1) key By turning On Auto Zero, the most accurate to set Auto Zero measurements is provided, but it requires extra time to execute the zero measurement. With autozero On, DAQ-9600 internally measures the offset following each measurement. It then subtracts that measurement from the preceding reading. This prevents offset voltages present on the DAQ-9600 input circuitry from affecting measurement accuracy. With autozero Off, DAQ-9600 measures offset once and subtracts the offset from all subsequent measurements.

PowerLow (F3) key Selects the low-power resistance measurement, which sources less current resulting in lower power dissipation, and less self-heating, in the resistance under test. Typically, this is about $1 / 10$ th the current sourced for the standard resistance measurements.

Delay (F5) key to to User defines a delay time to be inserted between the select a delay time actual measurement on each channel from a scan course.

Frequency/Period Measurement

Description The frequency/period measurements configurations.

F3 (Measure) key

 to select either Frequency or| Channel | Label | Measure | Range | GateTime | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 201 | EDIT | FREQ | Auto | $100 \mathrm{~ms}=$ | More 1/2 | Period

PERIOD

an						
201	EDIT					More 112

Input source and module terminals connection

F4 (Range) key to Press the key to enter Range menu and select a target specify range range for Frequency/Period measurements individually. The Auto indicates a range, which is based on the source input, is selected automatically. It is simetimes results in, compared with manual select range, slower measurement. Also, using the Range keys can select range promptly.

F5 (GeteTime) key Press the key to specify the threshold to recalculate to select speed Frequency/Period. Slower the gate time, e.g., 1s, more accurate the reading value.

F6 (More 1/2) key Press the key to enter the next page (More 2/2) of more to enter next functions configurations for measurement. function keys page

TimeOut (F1) key It defines the exact value for timeout, which means to define value measurement will be suspended after reaching the set timeout value when none of input is detected.
Note that when selecting "Auto", the timeout setting will fully sync with the Gate Time value.

Delay (F5) key to to User defines a delay time to be inserted between the select a delay time actual measurement on each channel from a scan course.

Diode Measurement

Description The diode measurement configurations.
F3 (Measure) key DIODE
to select Diode

01	EDIT	$\text { DIODE }=1$	$5 \mathrm{~V}$	$\begin{aligned} & \text { speou } \\ & \text { 100/s } \end{aligned}$	Mor

Duide source and module terminals connection

F4 (Range) key is The Range selection is fixed in 5V for Diode fixed in 5V measurement.

F5 (Speed) key to Press the key to enter Speed menu and select a target select speed speed for Diode measurement. Also, using the Arrow keys can select speed promptly.

F6 (More 1/2) key Press the key to enter the next page (More 2/2) of more to enter next functions configurations for measurement. function keys page

Function Keys in
More 2/2 page
Auto Zero Delay
Auto $=M o r e ~ 212$

Auto Zero (F1) key By turning On Auto Zero, the most accurate to set Auto Zero measurements is provided, but it requires extra time to execute the zero measurement. With autozero On, DAQ-9600 internally measures the offset following each measurement. It then subtracts that measurement from the preceding reading. This prevents offset voltages present on the DAQ-9600 input circuitry from affecting measurement accuracy. With autozero Off, DAQ-9600 measures offset once and subtracts the offset from all subsequent measurements.

Delay (F5) key to to User defines a delay time to be inserted between the select a delay time actual measurement on each channel from a scan course.

Capacitance Measurement

Description The capacitance measurement configurations.
F3 (Measure) key to select capacitance

CAP

Channel	Label	Measure	Range	Speed	More 1i2
201	EDIT	CAP	1 nF	Auto	A

Capacitance source and module terminals connection

F4 (Range) key to specify range

Press the key to enter Range menu and select a target range for capacitance measurement. The Auto indicates a range, which is based on the source input, is selected automatically. It is simetimes results in, compared with manual select range, slower measurement. Also, using the Range keys can select range promptly.

F5 (Speed) key is The Speed selection is fixed in Auto for Capacitance fixed in Auto measurement.

F6 (More 1/2) key Press the key to enter the next page (More $2 / 2$) of more to enter next functions configurations for measurement. function keys page

Function Keys in

More 2/2 page

Delay (F5) key to to User defines a delay time to be inserted between the select a delay time actual measurement on each channel from a scan course.

DCI/ACI Measurement

Description The DCI and ACI current measurements configurations.

\ N Note	Both DC and AC current measurements are available on the channels 21 and 22 of DAQ901module only.		
F3 (Measure) key to select either ACl or DCl	DCI		
	Channel Label Measure 221 y EDIT	$\begin{array}{l\|l} \hline \text { Range } & \text { Speed } \\ \text { Auto } z & 60 / \mathrm{s}= \end{array}$	More 1/2,
	ACI		
	Channel Label 221 Measure EDIT a ACl	$\begin{array}{l\|l} \text { Range } \\ \text { Auto } y & \begin{array}{c} \text { Speed } \\ 5 / \mathrm{s} \end{array} \end{array}$	More 1/2,
Current sources and module terminals connection	DCI	ACI	
			\pm

F4 (Range) key to Press the key to enter Range menu and select a target select ragne for ACl and DCl range for ACI and DCI measurements individually. The Auto indicates a range, which is based on the source input, is selected automatically. It is simetimes results in, compared with manual select range, slower measurement. Also, using the Range keys can select range promptly.

F5 (Speed) key to Press the key to enter Speed menu and select a target select speed for ACl and DCl speed for ACI and DCI measurements individually. Also, using the Arrow keys can select speed promptly.

F6 (More 1/2) key Press the key to enter the next page (More 2/2) of more to enter next functions configurations for measurement.
function keys page
Function Keys in
DCI

Auto Zero RangeLow	Delay	
On Off	1uA	Mure 2R2

ACI

RangeLow		
100uA		Delay Auto

Auto Zero (F1) key By turning On Auto Zero, the most accurate to set Auto Zero measurements is provided, but it requires extra time to (DCI only) execute the zero measurement. With autozero On, DAQ-9600 internally measures the offset following each measurement. It then subtracts that measurement from the preceding reading. This prevents offset voltages present on the DAQ-9600 input circuitry from affecting measurement accuracy. With autozero Off, DAQ-9600 measures offset once and subtracts the offset from all subsequent measurements.

Range Low (F2) The range of current is limited within the select low key to select rate ranges when Auto range is activated. This function is effective by utilizing low impedance to lessen errors from shunt when current range changes overly.

Delay (F5) key to to User defines a delay time to be inserted between the select a delay time actual measurement on each channel from a scan course.

Switch Mode for Channels

Background	The Switch mode from multiplexer modules empowers user to open and close channels individually. We will instroduc how to turn on and configure channels to the Switch mode in details.
\vdots Note \quadSwitch mode is available on the multiplexer DAQ900, DAQ901, DAQ902 and DAQ903 modules only.	
Steps	1. From the instance below in the Channel menu, the channel 101 is conflgured to measure mode STRAIN. chen

2. Press the Module key from the front panel followed by clicking the ViewMode key and then CH List key.

3. Use the Knob key to navigate through pages of a module (Slot 1 in the instance). It is seen that only the channel 101 is turned ON in Scan Status (measurement). Press the Remove All (F3) key to OFF all channels on Slot 1 module from Scan Status, which indicates that measurements of all channels on the module can now be configured to the Switch mode.

4. Press the Channel key from the front panel. It is seen that the Measure is OFF for the channel 101 and the Switch key and JoinBank key are available for On or Off by user.

- Switch:

To enable or disable switch for each channel.

- JoinBank:

To enable or disable multiple banks join of a module.
5. If user reselects a measurement from the Measure key (TEMP in the instance), the channel 101 will return to Scan Status On and both the Switch key and JoinBank key are no longer available.

Display
6. The figure below shows both Switch and JoinBank are turned ON for the channel 101 of the Slot 1 module.

When enabling JoinBank function on any of the channels, the JoinBank of all channels from the same module will be turned ON simultaneously.

Computer Channels

Background	Computer channels (401-420) can execute various mathematical operations from readings of measurement channels or other computer channels.				
$\$ Note & \multicolumn{3}{\|l	}{- To execute mathematical operations in computer channels, it is required to set up measurement channels beforehand. - Compuer channels are not able to be monitored readings in the Monitor mode. However, it is able to monitor readings of computer channels when the Scan mode is performed.} \hline \multirow[t]{14}{*}{Types} & \multicolumn{3}{\|l	}{The mathematical operations of computer channels can be divided into mainly three types as following:} \hline & Type & Softkey & Description \hline & Basic & $A+B$	Addition		
	Math	A - B	Subtraction		
		A * B	Multiplication		
		A / B	Division		
		$1 / \mathrm{A}$	Reciprocal		
		A * A	Power		
		Sqrt(A)	Square root		
	Statistics	AVG(List)	Calculates the average readings from a list of selected channels, where average reading $=$ total sum of all the readings/number of selected channels		
		MIN(List)	Calculates the minimum reading from a list of selected channels		
		MAX(List)	Calculates the maximum reading from a list of selected channels		
		SDEV(List)	Calculates the standard deviation readings from a list of selected channels		
	Polynomial 5TH(A)		Polynomial 5TH		

Basic Math

Description | An example of mathematical operation $\mathrm{A}+\mathrm{B}$ on the |
| :--- |
| channel 401 will be illustrated below. |

Steps 1. From the example below in the Channel menu, the Computer (F3) key is turned On and the Formula (F4) key is configured $\mathrm{A}+\mathrm{B}$. Also, press the $C H A(\mathrm{~F} 5)$ and the CH B (F6) keys to specify source channels as 201 and 202, individually.

The source channels of CH A and CH B can be an identical one. For instance, it is available to specify both as 201 channel.
2. Launch a scan course by pressing the Scan key from the front panel followed by clicking the View key from the front panel and the scan result is displayed here.
CH401 (+0.154744) =
CH201 (077.1446) + CH202 (077.6001)

LOC TMC			View		目 1 (1) ${ }^{\text {cha }}$ 16:56:28
Scan Memory 1/2					
Date	Time	CH		Label	Reading
2022/09/16	16:00:54.239	201	Relay	X Channeld	077.1446 mVAC
2022/09/16	16:00:55.311	202	Relay	XX Channel	077.6001 mVAC
2022/09/16	16:00:55.311	401	Comp	channel	+0.154744

Statistics

Description An example of mathematical operation AVF(List) on the channel 401 will be illustrated below.

Steps

1. From the example below in the Channel menu, the Computer (F3) key is turned On and the Formula (F4) key is configured AVG(List). Also, press the CH List (F5) key to enter the channel list edit.

2. Use knob key to navigate channels. Press the Select (F5) key to select a channel followed by press the OK (F4) key to confirm all selections. If a channel is selected, press the Cancel (F5) key to deselect a channel or press the ClearAll (F3) key to deselect all channels. Press the Exit (F6) key to leave without saving.

3. Launch a scan course by pressing the Scan key from the front panel followed by clicking the View key from the front panel and the scan result is displayed here.
CH401 (+078.2949) $=$
$[\mathrm{CH} 201$ (078.0570) $+\mathrm{CH} 202(078.4820)+\mathrm{CH} 203$
(078.3456)]/3

LOC TMC		M	View		
Scan Memory 1/2					
Date	Time	CH		CH Label	Reading
2022/09/16	17:28:45.042	201	Relay	MUX Channeld	078.0570 mVAC
2022/09/16	17:28:46.113	202	Relay	MUX Channel	078.4820 mVAC
2022/09/16	17:28:47.185	203	Relay	MUX Channel	078.3456 mVAC
2022/09/16	17:28:47.185	401	Comp	puter Channel	+078.2949 m

Description An example of mathematical operation 5TH(A) on the channel 401 will be illustrated below.

Steps 1. From the example below in the Channel menu, the Computer (F3) key is turned On and the Formula (F4) key is configured $5 \mathrm{TH}(\mathrm{A})$. Press the $C H A(\mathrm{~F} 5)$ key to specify source channels as 201 followed by pressing the More $1 / 2$ (F6) key to enter the next page.

2. Press the $(x) T H$ (F1) key to select a coefficient order ($0 \mathrm{TH}, 1 \mathrm{TH}, 2 \mathrm{TH}, 3 \mathrm{TH}, 4 \mathrm{TH}, 5 \mathrm{TH}$) followed by pressing the TH Value (F2) key to configure parameters for each coefficient order.

LOC [TMC]		M Channel	目 1f)	717:41:27
(81) -	NONE	(s)20+2CH) Relav	. 4×8	Matrix
401	Computer Channel			
Setting				
Function	Computer	1TH Value : +02.0.		
Formula	5TH(A)	2TH Value : +1.00		
CHA	201	3TH Value : +1.00		
		4TH Value : +1.00		
OTH Value :	+1.000000	5TH Value : +1.00		
(x) TH 3TH	3TH Value $+1.000000=$			More 212

3. Launch a scan course by pressing the Scan key from the front panel followed by clicking the View key from the front panel and the scan result is displayed here.
CH401 (+1.085099) =
The polynomial 5^{TH} order from CH201 (078.8081)

LOC TMC		M	View	目 a () ${ }^{\text {cha }}$ 17:50:54
Scan Memory 1/2				
Date	Time	CH	CH Label	Reading
2022/09/16	17:50:24.098	201	Relay MUX Channeld	078.8081 mVAC
2022/09/16	17:50:24.325	202	Relay MUX Channel	078.8081 mVAC
2022/09/16	17:50:24.555	203	Relay MUX Channel	078.8664 mVAC
2022/09/16	17:50:24.555	401	Computer Channel	+1.085550

Interval Menu

> Background Press the Interval key on the front panel to enter the Interval menu to configure the method to start each sweep and a total number of sweeps for a scan course. The screen layout of Interval menu is almost identical to that of Home screen and is only different in the function keys.

Interval

F1	Auto	It indicates an immediate trigger，which means each
（TrigSource） key to select a sweep starts automatically when a scan course begins．		
trigger source method	Trigsource	Auto

TrigSource	Time	Sweeps Sweeps INF	Signal Out	
Time z	$00: 00: 20=$	$3=y$	On Off	
Pos（Neo				

During a scan course，each sweep only starts when the set timer completes countdown．

Next sweep waits until countdown by set timer

LOC TMMC	Home			目吅）碞 10：37：25	
（1）－NONE（S2）（0＋2CH）Relav MUXX（3） 4×8－Matrix					
START	Next Sweep ：00：00：16		0：16	$\begin{gathered} \text { Start Time: } \\ \text { 2022/09/19 10:37:22 } \end{gathered}$	
Setting				［CH 201］	
TrigSource： Sweeps	Time 3	$\begin{array}{lc} \text { Signal Out: } & \text { Negative } \\ \text { Interval : } & 00: 00: 20 \\ \text { LogOfRows: } & 1 \mathrm{M} \end{array}$		Relay MUX ChanneID AC Voltage	
Log to	Off			Alarm： Total C	$\begin{array}{l\|l\|l} \hline 1 \\ \hline \end{array}$ nnels： 005
Alarm0ut Setup					

Manual It indicates a manual trigger. When selecting this method, user needs to press the Scan key on the front panel to start each sweep for a scan course.

| TrigSource | Sweeps Sweeps INF | Signal Out |
| :---: | :---: | :---: | :---: |
| Manual | $3=0 n 0$ Off | Pos Neg |

During a scan course, each sweep only starts when user presses the Scan key.

Next sweep waits until Scan Key by user

External It indicates a trigger signal received from the rear panel to start each sweep for a scan course. Press the TrigSignal (F2) key to configure the polarity of external signal in either Pos or Neg.

TrigSource	TrigSignal	Sweeps Sweeps INF	Signal Out	
Externakz	Pos Neg	3	On Off	Pos Neg

During a scan course, each sweep only starts when an External signal is received.

$\begin{aligned} & \text { Next s } \\ & \text { LOC\|TMC] } \end{aligned}$	weep waits		External signa		
		Ho	me S	目 1 P	10:37:44
S1-	NONE	[(5) 0 (1+2CH) Relay MIUX](3)		[33) 4x	Matrix
START	Next Sweep : Wait..(EXT)			$\begin{gathered} \text { Start Time: } \\ \text { 2022:09/19 10:37:42 } \end{gathered}$	
	Scan Count				
Setting				CH 201	
TrigSource: Swreeps Log to USE:	$\begin{gathered} \text { External } \\ 3 \\ 0 f f \end{gathered}$	Signal Out: Negative TrigSignal : Negative LogOfRows: 1M		Relay MUX ChanneID AC Voltage	
				Total C	nels: 005
Alarm0ut Setup					

On It indicates a sweep starts when an alarm is detected
Alarm from the set channel. Press the On Alarm (F2) key to specify which alarm (1-4) is used to report on the select channel.

| TrigSource | On Alarm | Sweeps Sweeps INF | |
| :---: | :---: | :---: | :---: | :---: |
| On Alarm: | $\# 2$ | 3 | On Off |

During a scan course, each sweep only starts when an designated Alarm is detected

F2 (Time) key When Time of TrigSource is selected, press the key to specify a to set interval time interval.

F2 When External of TrigSource is selected, press the key to
(TrigSignal) key configure the polarity

F2 (On Alarm) key specify alarm key specify number Out) key set polarity

F3 (Sweeps) It specifies a total number of times of sweeps that DAQ-9600

F4 (Sweeps It configures that DAQ-9600 will execute a scan course INF) key set indefinitely until user stop scan course via long pressing the INF sweeps Scan key on the front panel.

F6 (Signal It configures either Pos or Neg polarity will be used as signal
configure the polarity of external signal in either Pos or Neg.
\qquad
When On Alarm of TrigSource is selected, press the key to specify which alarm (\#1 - \#4) is used to report on the select channel. will run through a scan course. out on the rear panel.

Edit Menu

Background	Press the Edit key on the front panel to enter the Edit menu in which user is able to copy measurement functions, alarm settings and so on from channels to channels with ease.
Edit Menu Diagram	

Source The channels selected as source are displayed in Channel detail within the lower list section and the upper section indicates the total number of source channels selected.

Dest. The channels selected as destination are displayed Channel in detail within the lower list section and the upper section indicates the total number of destination channels selected.

Function The function keys here are simple. Press Source CH Keys (F1) key to select source channel(s) and press Dest. CH (F2) key to select destination channel(s) followed by pressing Copy (F6) key to perform the action of channel copying.

Source channel(s) must be configured with measurement function beforehand.

Copy Channels

Description Channel(s) copying can be performed in various ways: one-to-one, one-to-many and many-to-many. In this chapter an example of many-to-many channels copying is illustrated.

Steps 1. Press the Edit key on the front panel to enter the Edit menu followed by pressing the Source $C H(\mathrm{~F} 1)$ key to edit the Source Channel Select list.

2. Use knob key to navigate channels followed by pressing Select or SelectAll to select source channels. Press Cancel or Clear All to deselect channels. Press $O K$ to confirm selection. Press Exit to leave the page without saving the selection.

Only the channels with measurement functions are displayed in the Source Channel Select list since source channel(s) must be configured with measurement beforehand.
3. After pressing $O K$ key from the previous page, the selected channels are displayed within the left part (201-203 for example). Further press the Dest. CH (F2) key to edit list of Dest. Channel Select.

4. Use knob key to navigate channels followed by pressing Select or Select All to select destination channels. Press Cancel or Clear All to deselect channels. Press $O K$ to confirm selection. Press Exit to leave the page without saving the selection.

Those selected as source channels previously will not displayed here within the Dest. Channel Select list.
5. After pressing $O K$ key from the previous page, the selected channels are displayed within the right part (206-208 for example). Further press the Copy (F6) key to perform channels copying action.

6. The configurations of channels 201 - 203 are well copied to the channels 209 through 211. It is seen that the prompt message of " 3 channels copied" is shown in display.

The Computer channels (401-420) are not available for channels copying operations.

Alarm Menu

Alarm Configuration

Description This section demostrates how to configure alarm conditions for each selected channels.

Steps 1. Press the Alarm key on the front panel to enter the Alarm menu and use the knob key to navigate channels to select a target one (channel 101 for example below).

LOC [TMC]			Alarm	目 10) 哏 14:12:45	
			NONE	(s3) -	NONE
101	Relay MUX Channel				
Setting				MX+B	
Function :	: DC Voltage	Delay	: Auto	m Value	: +1.000000
Range	Auto			B Value	: +0000.0000 m
Speed :	: 601s			AVG	Alarm ${ }^{\text {2 }}$
Auto Zero :	On			HiLimit	: +033.0000
Input R	10M			Lo Limit	: +1.000000
$\begin{gathered} \text { Alarm } \\ \text { HightLowz } \end{gathered}$				$\begin{aligned} & \text { Low Lim } \\ & +1.000000 \end{aligned}$	$\begin{array}{l\|l} \text { nit } \\ i 0=1 & \text { High Limit } \\ +033.0000= \end{array}$

2. Press the Alarm (F1) key to select an alarm limit(s) mode to report for select channel.

OFF Alarm condition is disabled for select channel.
High + Both High and Low limits of Alarm condition are Low activated.

High High limit of Alarm condition is activated.
Low Low limit of Alarm condition is activated.
3. Press the $\operatorname{Output}(\mathrm{F} 2)$ key to select which of the four alarms will be utilized to report alarm conditions for select channel.

4. Press the Low Limit (F5) and the High Limit (F6) keys to specify alarm limits individually for select channel.

5．Press the Scan key on the front panel to initiate a scan course．When the set alarm occurs for select channel during a scan course，the alarm status will be shown clearly as the following example．

6．Also，the alarm details will be saved in the memory when the set alarm occurs for select channel during a scan course． Press the View key on the front panel to view the info of triggered alarm．Refer to page 98 for details of View menu．

Loc［TMC］				［日里何號14：56：27		The details of alarm \＃2 for channel 101 is well displayed
CH	${ }_{\text {Alam }}$	$\frac{\text { Limit }}{\text { Lowt }}$	$\frac{\text { Reading }}{\text {－027．425 mVC }}$	$\frac{\text { Date }}{\text { 202709／19 }}$	${ }_{\text {Time }}^{\text {Tis51／418 }}$	

Alarm in Under the Monitor mode，if set limit of alarm is exceeded，the Monitor mode color of reading becomes warning red in different display modes．

Number display

Trend display

Bar display

Histogram display

View Menu

Background	Pre	5
	View menu where several relevant info after scanned measurement including Data，Alarm，Error and	
	RelayCycle are displayed for user to have better understanding of measured info by a scan course．	

Data View

Background This section introduces view menu for measured scan Data， which can be viewed in various displays including List， Statistics，TrendChart and Histogram．

List Display

Steps 1．Press the View（F1）key followed by pressing the Data（F1） key．And then press the Display（F2）key followed by selecting the List（F1）key to enter the page of scanned data in List display．

2．Press the Page（F3）key to jump to each page of measured data or it is available to use the knob key to navigate through pages conviniently．

LOC TMC］			View	目哬嗗 10：09：11
Scan Memory				3／13
Date	Time	CH	CH Label	Reading
2022／09／20	09：36：00．895	117	Relay MUX Channel	075.7650 mVAC
2022／09／20	09：35：00．940	118	Relay MUX Channel	＋0301．623 ${ }^{\circ} \mathrm{C}$
2022／09／20	09：36：00．985	119	Relay MUX Channel	－20872．9
2022／09／20	09：36：01．358	120	Relay MUX Channel	OverLoad Gת
2022／09／20	09：36：01．405	101	Relay MUX Chamel	＋01．10801 VOC
2022／09／20	09：36：02，476	102	Relay MUX Chamel	075．9483 mVAC
2022／09／20	09：36：02．521	103	Relay MUX Chamel	＋0765．824 ${ }^{\circ} \mathrm{C}$
2022／09／20	09：36：02．567	104	Relay MUX Channel	－14451．7
View Data $=$	Display List $=$	Page 00003		

3. The list mode displays Date, Time, Channel, Channel Label (naming by user) and reading of each measured data from a scan course.

LOC TMMC			View			
Scan Memory 3/13						
Date	Time	CH		Label	Readir	
2022/09/20	09:36:00.895	117	Relay	UX Channel	075.7650	mVAC
2022/09/20	09:36:00.940	118	Relay 1	UX Channel	+0301.623	
2022/09/20	09:36:00.985	119	Relay 1	UX Chamel	-20872.9	¢
2022/09/20	09:36:01.358	120	Relay N	UX Channel	OverLoad	Gת
2022/09/20	09:36:01.405	101	Relay 1	UX Channel	+01.10801	VDC
2022/09/20	09:36:02,476	102	Relay	UX Channel	075.9483	mVAC
2022/09/20	09:36:02.521	103	Relay 1	Ux Channel	+0765.824	
2022/09/20	09:36:02.567	104	Relay	UX Chamel	-14451.7	
View Data $=$	Display List =	Page 00003				

Statistics Display
Steps

1. Press the View (F1) key followed by pressing the Data (F1) key. And then press the Display (F2) key followed by selecting the Statistics (F2) key to enter the page of scanned data in Statistics display.

2. Use the knob key to navigate through pages conviniently.

LOC TMMC			View	回	
Statistics 1/3					
CH	Min	Max	Pk-Pk	Average	STDEY
101	+01.09816	+01.10590	+00.00773	+1.100036	+02.56039m
102	076.7440m	076.9100m	000.1650m	+076.8079m	+059.7141
103	+0206.993	OverLoad	OverLoad	OverLoad	OverLoad
104	-22050.5	-4925.4	+17125.0	-0.000013k	+05.40913m
105	0.249660 G	0.258146 G	0.008486 G	+0.253459G	+03.14241M
106	+1.095787	+1.101235	+0.005447	+1.098660	+02.09582m
107	077.0105 m	077.4177m	000.4071 m	+077.2196m	+0.123452m
108	OverLoad	OverLoad	OverLoad	OverLoad	OverLoad
View Data		$\begin{array}{r} y \quad \mathrm{Mo} \\ =(\text { STAT) } \end{array}$			

3．The statistics mode displays Channel，Mininum，Maximum， Pk－Pk（Peak－to－Peak），Average and STDEV（Standard Deviation）of readings data from a scan course．

LOC TMMC	View			目 1（））可号 11：16：04	
	Statistics 1／3				
CH	Min	Max	Pk－Pk	Average	STDEV
101	＋01．09816	＋01．10590	＋00．00773	＋1．100036	＋02．56039m
102	076.7440 m	076．9100m	000．1660m	＋076．8079m	＋059．7141H
103	＋0206．993	OverLoad	OverLoad	OverLoad	OverLoad
104	－22050．5	－4925．4	＋17125．0	－0．000013k	＋05．40913m
105	0．249660G	0.258146 G	0.008486 G	＋0．253459G	＋03．14241M
106	＋1．095787	＋1．101235	＋0．005447	＋1．098660	＋02．09582m
107	077．0105m	077．4177m	000．4071m	＋077．2196m	＋0．123452m
108	OverLoad	OverLoad	OverLoad	OverLoad	OverLoad
View Data		$\begin{array}{r} y \\ s=\frac{M 0}{\text { STAT }} \end{array}$			

4．Press the Mode（F3）key to toggle between STAT（Statistics） and TIM（Time Stamp）displays．The TIM mode displays the Date \＆Time of Minimum and Maximum readings of each channel from a scan course．

Trend Chart Display

Steps 1．Press the View（F1）key followed by pressing the Data（F1） key．And then press the Display（F2）key followed by selecting the TrendChart（F3）key to enter the page of scanned data in Trend Chart display．

2. When the "CH" is selected for ViewMode (F3) key, scroll the knob key to navigate through channels.

3. When the "GRH" is selected for ViewMode (F3) key, scroll the knob key to navigate through scanned counts. If pressing knob key, the maximum counts moving by scrolling knob key per time will be changed.

Pixels options: 1 pixel - 40 pixels -400 pixels

F4 (Vscale) key to edit scale ranges

- VScale - Normal:

It allows the vertical scale of trend chart to be symmetric with the set range for channel.

- VScale - Manual:

It allows the vertical scale of trend chart to be customized in the following 2 ways.

L \& H for Manual
After L and H are set up individually, the vertical upper and lower ranges are corresponding to the set values accordingly.

Auto(Once) for Manual
After Auto(Once) is pressed, the vertical upper and lower ranges are automatically defined in accord with the latest 400 counts of scanned data.

F5

(KnobMode)
key to view in details

- KnobMode - Range:

It allows user to view detailed info on the trend chart.
Press Range key followed by scrolling knob key rightward or leftward to move cursors on different sections.

Green The total counts of scanned measurements.
Sect.
Yellow Press the knob key to change the maximum
Sect. counts moving by scrolling knob key per time.
1 pixel - 40 pixels -400 pixels
Orange The lowest value of the selected count with its
Sect. affiliated serial number and time stamp.
Blue The highest value of the selected count with its
Sect. affiliated serial number and time stamp.
White The delta between the highest and lowest values of
Sect. the selected count with its affiliated serial number.
Purple The horizontal scale of measurements displayed
Sect. is fixed in the 400 counts
Red It indicates the counts of moving range by
Sect. scrolling knob key rightward or leftward to differenct section per time. Based on the Yellow Sect., when 400 pixels is defined, scroll the Knob key once, the scale increases or decreases 400 counts per time.

- KnobMode - Cursor 1 \& Cursor 2:

It allows user to view the lowest and highest readings of each count on the trend chart. Press the Cursor1 (F2) or Cursor2 (F3) key followed by scrolling knob key rightward or leftward to move cursors on different sections.

White The total counts of scanned measurements.
Sect.
Green Press the Cursor1 for checking the lowest value
Sect. of each count.
Blue Press the Cursor2 for checking the highest value
Sect. of each count.
Red The lowest value of the selected count with its
Sect. affiliated serial number and time stamp.
Purple The highest value of the selected count with its
Sect. affiliated serial number and time stamp.
Yellow Press the knob key to change the maximum
Sect. counts moving by scrolling knob key per time.
1 pixel - 10 pixels - 20 pixels
Orange The delta between the highest and lowest values of Sect. the selected count with its affiliated serial number.

Steps 1. Press the View (F1) key followed by pressing the Data (F1) key. And then press the Display (F2) key followed by selecting the Histogram (F4) key to enter the page of scanned data in Histogram display.

2. When the "CH" is selected for ViewMode (F3) key, scroll the knob key to navigate through channels.

3. When the "GRH" is selected for ViewMode (F3) key, scroll the knob key to navigate through each scanned count.

4. Due to readings are not updated with the live scan in histogram display, press the Refresh (F4) key to update live readings when a scan course is ongoing.

Alarm View

Description This section introduces view menu for Alarms. Only when alarm setting is configured beforehand for select channel, the alarm list will display details of channel, limit, reading and time stamp of the latest 40 alarms. Refer to page 95 for details of how to configure alarms. After user reads the Alarm list here, the whole Alarm list will be cleared.

Steps 1. Press the View (F1) key followed by pressing the Alarm (F2) key. And the Alarm list page shows the latest alarms in details.

2. Use the knob key to navigate through pages to have view on more alarms from different pages.

Error View

Description This section introduces view menu for Errors. The Error list displays Code and String of the latest 20 errors. After user reads the Error list here, the ERR icon on the top status bar will be erased and the whole Error list will be cleared.

Steps

1. Press the View (F1) key followed by pressing the Error (F3) key. And the Error list page shows the latest errors in details.

LOC TMMC ERR]	View	目何) 돈) 17:22:34
Error 1/2		
Code		
-220		
-100		
-100		
-100		
-100		
-220		
-220		
-220		
View Error $=$		

2. Use the knob key to navigate through pages to have view on more errors from different pages.

Relay Cycle View

Description This section introduces view menu for Relay Cycle of each channel from the installed module. It empowers user to track if any relay failures or to figure out requirements of maintenance.

Steps 1. Press the View (F1) key followed by pressing the RelayCycle (F4) key. And the Relay Cycles list page displays the number of cycles on each relay from the installed modules.

2. Use the knob key to navigate through pages to have view on the number of cycles of each relay from different channels.

LOC TMMC	View	目 $\mathrm{a}(\mathrm{f})$ 든 10:01:53
Relay Cycles 21		
CH	CH Description	User Cycles
309	Solid-State MUX Channel	13400890
310	Solid-State MUX Channel	13400807
311	Solid-State MUX Channel	13400465
312	Solid-State MUX Chamel	13400430
313	Solid-State MUX Channel	13400422
314	Solid-State MUX Channel	13400414
315	Solid-State MUX Chamnel	13400409
316	Solid-State MUX Chamnel	13400399
		[ESC]:Return ()
Slot 1	Slot 3	

Module Menu

Background \quadPress the Module key on the front panel to enter the Module menu where user can view circuit diagrams of installed modules, check both scan and switch status of channels from installed modules and proceed to firmware update for installed modules.	
Steps	1. After pressing the Module key on the front panel, the circuit diagram of installed module is displayed. Scroll the knob key to navigate through installed modules to select a target module.

2. Press the ViewMode (F1) key followed by pressing the CH List (F2) key. And the Scan Status of all channels from select module will be shown. Scroll the knob key to navigate through pages of different channels. Press Remove All (F3) key to remove the set measurements of all channels at once. Refer to page 51 for details of Switch mode.

3. If any channel is set Switch mode, press the Status (F2) key to select SW followed by pressing the Card Reset (F3) key to reset the select module. All channels on the module will be opened. Refer to page 83 for details of Switch mode.

LOC [TMC]	Module	目 (f) 嗗 17:13:30
Slot 1	Scan Status	$1 / 3$
CH	CH Description	Switch Status
101	Relay MUX Channel	ON
102	Relay MUX Chamnel	OFF
103	Relay MUX Channel	ON
104	Relay MUX Channel	OFF
105	Relay MUX Chamnel	OFF
106	Relay MUX Chamnel	ON
107	Relay MUX Chamel	ON
108	Relay Mux Chamel	ON
ViewMode Status CHList ₹ CH (SW)	Card Reset	FW Update

4. When user intends to carry out firmware update for installed module, press the FW Update (F6) key to perform update process. The prompt message pops up and user can press Yes (F1) to carry on the update.

Connect an USB disk containing compatible firmware file to the USB host port on front panel of DAQ-9600 before proceeding to FW Update for installed module.

Math Menu

- User needs to configure channel measurement before setting up the Math equations.
- If the measurement of channel is changed (from ACV to DCV for example), Math function will be Off. Reconfigure Math function after chaning measurement.
- dBm and dB equations are available on channels set in DCV and ACV measurements only.

dBm Measurement

Math Equation $10 \times \log 10(1000 \times$ Vreading2 / Rref)
F1 (Function) dBm
key to select
dBm equation

F3 (REF Ω) key to Press the key to enter the menu to change the reference select reference resistance, which indicates reference resistance simulating an resistance output load.

dB Ref Ω	N	3	14	Local: -	ESC): 0
Q					Enter

F2 (MathDisp) Press the key to show the MathDisp menu for 4 different key to select display modes displays. See the following descriptions for details.

Only when Alarm configuration is enabled can the "Alarm" and "ALR+STAT" of Math Display are available to activate.
$\left.\begin{array}{lll}\begin{array}{ll}\text { Show STAT } \\ \text { Result }\end{array} & \text { Description } & \text { The STAT page in MathDisp allows user to } \\ & \text { make statistical calculations for measurements } \\ \text { including Minimum, Maximum, Average }\end{array}\right\}$

Show Math Description The Math page in MathDisp allows user to view Result mathematical calculations for several parameters.

Show Alarm
Result

Description The Alarm page in MathDisp allows user to track if measured data exceeds the set High and Low limits, individually.

Values \begin{tabular}{lll}
Low Limit \& Indicates the set low limit of channel

\hline High Limit \& Indicates the set high limit of channel

\hline Low Fail \& | Inidcates the numbers of low limit |
| :--- |
| exceeding |

\hline High Fail \& | Inidcates the numbers of high limit |
| :--- |
| exceeding |

\end{tabular}

Show
ALR+STAT
Result

Description The ALR+STAT page in MathDisp allows user to view information from both STAT and Alarm pages simultaneously.

Values \begin{tabular}{ll}

Left Sec. \& | The numbers of High and Low limits |
| :--- |
| exceeding are shown individually. |

\& | The values, which based on dBm |
| :--- |
| calculation, indentical to STAT page |
| are well displayed. |

\end{tabular}

Only when Alarm configuration is enabled can the "Alarm" and "ALR+STAT" of Math Display are available to activate. Refer to page 95 for details of Alarm.

dB Measurement

Math Equation $\mathrm{dBm}-\mathrm{dBmref}$
F1 (Function) dB
key to select dB equation

```
Function MathDisp REF \Omega ReflMethod Ref Value Ref Value
```

F3 (REF Ω) key to Press the key to enter the menu to change the reference select reference resistance, which indicates reference resistance simulating an resistance output load.

dB Ref Ω	W	3		4	Local:		SCl : 0
Ω							Enter

F4 (Ref Method) Press the key to enter the Reference method menu which key select $d B \quad$ involves the 2 ways to calculate $d B$ value. When $d B m$ option reference is selected, user can specify a definite $d B m$ value for $d B$ method calculation. If selecting Voltage option, system regards the defined voltage value as the Vreading parameter for dBm calculation, thus resulting in different dB value than the previous option.

F5 (Ref Value) In order to define either voltage or dBm reference value, to define both of which are corresponding to the previous F4 (Ref reference Method) option, press the key to enter the Ref Value menu value (voltage to configure either voltage or dBm reference value. or dBm)

F6 (Ref Value) Press the key to instantly make the current dBm value, which key to get value is calculated by the current input voltage with the equation, as at once the Ref dBm (dBm reference).

F2 (MathDisp) Press the key to show the MathDisp menu for 4 different key to select displays. See the following descriptions for details. display modes

Only when Alarm configuration is enabled can the "Alarm" and "ALR+STAT" of Math Display are available to activate.

Show STAT Result

Description The STAT page in MathDisp allows user to make statistical calculations for measurements including Minimum, Maximum, Average Peak-Peak, Standard Deviation and Count.

Values | +03.01737 dB | Indicates the latest dB value |
| :--- | :--- |
| Minimum | Indicates the minimum value |
| Maximum | Indicates the maximum value |
| Average | Indicates the average value |
| Peak-Peak | Indicates the peak to peak value |
| STDEV | Indicates the standard deviation value |
| Count | Indicates the latest counts of dB |

Show Math
Result

Description The Math page in MathDisp allows user to view mathematical calculations for several parameters.

Values $\quad-039.6161 \mathrm{~dB} \quad$ Indicates the latest dB value
Measure Indicates the originally measured Voltage value
$\operatorname{Ref} \Omega \quad$ Indicates the defined ref Ω value
Ref Voltage Indicates the measured reference voltage value

Ref dBm Indicates the measured reference dBm value

Show Alarm Result	Description	The Alarm page in MathDisp allows user to track if measured data exceeds the set High and Low limits, individually.
	Values	Low Limit Indicates the set low limit of channel
		High Limit Indicates the set high limit of channel
		Low Fail $\begin{aligned} & \text { Inidcates the numbers of low limit } \\ & \text { exceeding }\end{aligned}$
		High Fail $\begin{aligned} & \text { Inidcates the numbers of high limit } \\ & \text { exceeding }\end{aligned}$

Show
ALR+STAT
Result

Description The ALR+STAT page in MathDisp allows user to view information from both STAT and Alarm pages simultaneously.

Values Left Sec. The numbers of High and Low limits exceeding are shown individually.

Right Sec. The values, which based on dB calculation, indentical to STAT page are well displayed.

Only when Alarm configuration is enabled can the "Alarm" and "ALR+STAT" of Math Display are available to activate. Refer to page 95 for details of Alarm.

MX+B Measurement

Math Equation Multiplies the reading (X) by the factor (M) and adds/subtracts offset (B).

F1 (Function) MX +B
key to select
MX+B equation

F3 (M Value) key Press the key to enter the menu to configure a M (Gain) to set the value for $\mathrm{MX}+\mathrm{B}$ equation.
gain M value

F4 (B Value) key Press the key to enter the menu to configure a B (Offset) to set the value for $\mathrm{MX}+\mathrm{B}$ equation.
offset B value

F5 (B (Offset)) Press the key to instantly perform an offset current key to get value measurment for the B (Offset) value. at once

F2 (MathDisp) Press the key to show the MathDisp menu for 4 different key to select displays. See the following descriptions for details. display modes

Only when Alarm configuration is enabled can the "Alarm" and "ALR+STAT" of Math Display are available to activate.

Show STAT
Result
Description The STAT page in MathDisp allows user to make statistical calculations for measurements including Minimum, Maximum, Average Peak-Peak, Standard Deviation and Count.

| Values | +074.26 mVAC Indicates the latest MX +B value
 Minimum Indicates the minimum value ll |
| :--- | :--- | :--- |

		Maximum	Indicates the maximum value
		Average	Indicates the average value
		Peak-Peak	Indicates the peak to peak value
		STDEV	Indicates the standard deviation value
		Count	Indicates the latest counts of MX + B
Show Math Result	Description	The Math page mathematical	in MathDisp allows user to view calculations for several parameters. B Value B(Offset) $=+000,0000 \mathrm{mzs}$ Current More $1 / 2$
	Values	+074.29 mVAC	Indicates the latest MX +B value
		Measure	Indicates the originally measured Voltage value
		M Value	Indicates the defined M value
		B Value	Indicates the defined B value
Show Alarm Result	Description	The Alarm p track if meas and Low limi	e in MathDisp allows user to red data exceeds the set High , individually.
	Values	Low Limit	Indicates the set low limit of channel
		High Limit	Indicates the set high limit of channel
		Low Fail	Inidcates the numbers of low limit exceeding
		High Fail	Inidcates the numbers of high limit exceeding

Note
Only when Alarm configuration is enabled can the "Alarm" and "ALR+STAT" of Math Display are available to activate. Refer to page 95 for details of Alarm.

F6 (More 1/2) key Press the key to enter the next page (More 2/2) of more to enter next functions configurations for $\mathrm{MX}+\mathrm{B}$.
function keys page

More 2/2 page
F1 (B (Offset)) key Press the key to clear the B value to zero. to clear B value

F2 (User Units) key Press the key to enable or disable user-defined units. to turn On or Off Choosing On will display user-defined units on user-defined units measurement; selecting Off will display default units (VDC).

F3 (Units) key to Press the key to specify a user-defined string, which consists of edit User Units up to 3 characters and is shown in the Monitor mode display.

F5 (Decimal PT) Press the key to show the Decimal Point menu to configure key to configure either Auto or Range mode for Monitor display. Auto means that the unit of measured reading fluctuates with the actual measured condition, whilst Range indicates that the unit of measured reading is fixed in accord with the set range setting.

Auto

The measured reading display fluctuates with actual condition.

Range

The measured reading display is consist with the set range.

1/X Measurement

Math Equation Divides 1 by the reading (X).

F2 (MathDisp) key to select display modes

Press the key to show the MathDisp menu for 4 different displays. See the following descriptions for details.

Only when Alarm configuration is enabled can the "Alarm" and "ALR+STAT" of Math Display are available to activate.

Show STAT Result

Description The STAT page in MathDisp allows user to make statistical calculations for measurements including Minimum, Maximum, Average Peak-Peak, Standard Deviation and Count.

Values | +0.141745 k | Indicates the $1 / \mathrm{X}$ calculation |
| :--- | :--- |
| Minimum | Indicates the minimum value |
| Maximum | Indicates the maximum value |
| Average | Indicates the average value |
| Peak-Peak | Indicates the peak to peak value |
| STDEV | Indicates the standard deviation value |
| Count | Indicates the latest counts of $1 / \mathrm{X}$ |

Show Math Result

Description The Math page in MathDisp allows user to view mathematical calculations for several parameters.

Values $\quad+029.8452 \quad$ Indicates the $1 / \mathrm{X}$ calculation
Measure Indicates the originally measured Voltage value

Only when Alarm configuration is enabled can the "Alarm" and "ALR+STAT" of Math Display are available to activate. Refer to page 95 for details of Alarm.

Percent Measurement

Math	(Reading $\mathrm{X}-$ Reference)
Equation	Reference

F1 (Function)	Percent
key to select	Function Mathoisp ReF
Percent equation	

F3 (REF \%) key Press the key to enter the menu to configure a Reference to set the value for Percent equation.

F4 (REF \%) key to Press the key to instantly perform an reference measurment get value at once for the REF \% value.

F2 (MathDisp) Press the key to show the MathDisp menu for 4 different key to select displays. See the following descriptions for details. display modes

Only when Alarm configuration is enabled can the "Alarm" and "ALR+STAT" of Math Display are available to activate.

Show STAT Result

Description The STAT page in MathDisp allows user to make statistical calculations for measurements including Minimum, Maximum, Average Peak-Peak, Standard Deviation and Count.

Values | -30.2959 | Indicates the Percent calculation |
| :--- | :--- |
| Minimum | Indicates the minimum value |
| Maximum | Indicates the maximum value |
| Average | Indicates the average value |
| Peak-Peak | Indicates the peak to peak value |
| STDEV | Indicates the standard deviation value |

Show
ALR+STAT
Result

Description The ALR+STAT page in MathDisp allows user to view information from both STAT and Alarm pages simultaneously.

LOC [TMC]	M Monitor	

101 IDC Voltage] (Alarm) [PERC) (5/s]MRange: 100 mV

A-Zero

$\mathrm{Low}_{\mathrm{O}}^{\mathrm{Fail}}$	$\operatorname{High}_{3} \text { Fail }$	MIN : +0.155065 MAX: +09.32411 AVG: +05.60276	P-P : +09.16904 STD : +03.01035 COU: 4
Display Number \mathbf{z}			ReStart

Values Left Sec.

Right Sec.

The numbers of High and Low limits exceeding are shown individually.

The values, which based on Percent measurement, indentical to STAT page are well displayed.

Only when Alarm configuration is enabled can the "Alarm" and "ALR+STAT" of Math Display are available to activate. Refer to page 95 for details of Alarm.

Average Menu

Background	Press the Average key on the front panel to enter the Average menu. The digital average function averages a specified number of input signal samples to generate one reading. The following diagram demostrates the method of Average using 4 samples per reading.
	Average The digital average renews a whole group of samples per reading. This method is recommended when using the optional scanner.
	$\overbrace{}^{$ 1st reading Sample 1-4 $}$2nd reading Sample 5-8
	$\begin{array}{llllllllllllll}\text { Sample \# } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$
F1 (Average) key to turn On/Off Average function	Press the key to enable or disable the Average function.
F2 (Count) key to specify sample counts per reading	Press the key to enter the menu to specify count of average, which defines the number of samples to be averaged per reading. More samples offer low noise but a long delay. Less samples offer high noise but a short delay.

F3 (WinMethod) Press the key to enter the Average Window Method menu. key to select Average window defines the threshold for when the digital Average Window average data is updated again. When the data falls in the Method range between TH and TL, the Average keeps processing. When the data falls out of the range between TH and TL, the Average will restart. When measuring unstable signals, appropriately setting the average window can improve the measurement speed.

	Average Window Method	[ESC]:Return \bigcirc
Measure Range		

TH: Threshold High, TL: Threshold Low
F4 (Window) key Measure:
to specify \quad Previous Meas*(1-window) $<$ threshold $<$ Previous
Average Window Meas*(1+window).
range
Range:
Previous Measure $+($ Range $*$ window $)<$ threshold $<$ Previous Measure + (Range * window)
E ASC]:Return ()

0.01%	0.1%	1%	10%	NONE	

Log Menu

Background \quadPress the \log key on the front panel to enter the Log menu, which allows user to perform Capture function, which captures screenshot of hardcopy, or to operate ScanData, which saves data log of scanned readings into installed USB disk.	
Before performing Log functions, be aware of the	
supported USB disk as following:	
- USB Disk Type: Flash Disk Only	
- FAT Format: Fat16 or Fat32 (Recommended)	
-Max memory size: 128 GB	
- USB disk which requires card adaptor is Not	
	recommended to be used in this application.

Capture

Steps 1. Press the $\log P A R A$ (F1) key to select Capture.

Log PARA	FileName	Name			Capture
Capture z	Default $=7$	Time			

2. Press the FileName (F2) key to determine filename of captured screenshots. The "Default" option remains filename in date $\&$ time format (e.g., SCREEN_20220909 13-20-25).
3. If selecting "Manual" option, press the EditName (F3) key to enter the keyboard page to edit an user-defined filename.
4. Press the Capture (F 4) key to perform screenshot capturing. The prompt message pops up after completing capturing.

Scan Data

Steps 1. Press the $\log P A R A(F 1)$ key to select ScanData.

2. Press the Logging (F2) key to activate if scanned readings data will be saved into the inserted USB disk automatically. Selecting "Off" will not automatically save data into the USB disk and instead require manual operation for saving data.

From the Home screen, if auto-Logging function is enabled, the Log to USB will be shown "On". Refer to page 34 for details of Home screen.

3. Press the \# Rows (F3) key to specify the row limit, which indicates the max. number of rows for sweep data, of each data logging file. The " 65 k " means the limit is 65,536 rows per file. The " 1 M " indicates the limit is 1,048,576 rows per file and the "Infinite" stands for the limit varies based on the number of bytes permitted by file system itself.

ESCD:Return (5)
4. Press the SaveRead (F4) key to perform data \log of scanned readings saving into installed USB disk manually.

IGITAL I/O

Digital I/O Overview131
Application: Alarm Output 133
Application: External Trigger 135

Digital I/O Overview

Background The Digital I/O port contains 1 pin for External Trigger Input and 4 pins for Alarm Output.
When external trigger pulse is received by the external trigger input pin, the designated channel will be triggered accordingly.

In terms of the 4 alarm output pins, anyone of the 4 pins can be assigned to anyone of the input channels to trigger external LED light, Relay control or send a TTL-compatible pulse to control system.
Pin Connector type: DB-9 female
Assignment

Pin No	Pin Definition
1	Alarm_OUT1
2	Alarm_OUT2
3	Alarm_OUT3
4	Alarm_OUT4
5	EOM Out
6	External Trigger In
7	Digital Ground
8	NC
9	NC

Pin1-4	Pin 1-4 are Output TTL-compatible pins, which are selectable for TTL logic Hi or Lo alarm outputs.
	Pins 1-4 output wiring diagram
Pin5	EOM (End Of Measurement) signal Output. Activates when compare measurement is over. It is also available in other measurements.
Pin6	External Trigger Input. Accepts external trigger signals. For using external signals.
Pin7	Digital (chassis) Ground.

Application: Alarm Output

Background The alarm output pins of Digital I/O port located on the rear panel, which send a TTL-compatible alarm output, can trigger the connected external alarm devices like sirens and LED lights.

Anyone of the 4 alarm output pins can be assigned to anyone of the input channels to trigger external devices or send a TTL-compatible pulse to control system.

Alarm output Connect the external alarm output devices to the specific pins connection of Digital I/O port located on the rear panel.

Pin1-4
Alarm output pins
Connection

Activate Press the Alarm key on the front panel to enter alarm the Alarm menu.

Use the knob key to navigate channels to select a target channel (channel 101 for example below).

LOC TMC			Alarm			
(81) $20+2 \mathrm{CH}$) Relay MUX (S2) - NONE (S3) - NONE						
Setting MX+B						
Function :	DCVoltage	Delay		Auto	M Value	: +1.000000
Range	Auto				B Value	: +00000000 m
Speed :	601s				AVG	Alarm ${ }^{\text {+2 }}$
Auto Zero :	On				Hi Limit	: +033.0000
Input R :	10M				Lo Limit	: +1.000000
Alarm HightLowz	Output \#2				Low Lir $+1.00000$	$\begin{array}{l\|l\|} \hline \text { mit } & \text { High Limit } \\ 00= \\ +033,0000= \end{array}$

Press the Alarm（F1）key to select an alarm limit（s）mode for the select channel．

Alarm				ESC）：Return $\boldsymbol{9}$
OFF	High＋Low High	Low		

－OFF Alarm condition is disabled for select channel．
－High＋Both High and Low limits of Alarm condition are Low activated．
－High High limit of Alarm condition is activated．
－Low Low limit of Alarm condition is activated．
Press the Output（F2）key to select which of the 4 alarm output lines will be utilized to send alarm pulse for the selected channel．
\qquad
Press the Low Limit（F5）and the High Limit（F6）keys to specify alarm limits individually for the selected channel．

Press the Scan key on front panel to initiate a scan course．When the set alarm occurs for select channel during a scan course，the alarm status will be shown clearly as the following example．

LOC［TMC］			Home	旬 1 （）嗗 14：56：22		
（S1）20＋2CH）Relay MUX／（2）		s2－－	NONE	（⿴囗3）－－NONE		
STOP	Next Sweep ：－－－－－－－－Scan Count ：$\quad 3$			Start Time： 2022：09／19 14：55：17		
Setting				［CH 101］		
TrigSource： Sweeps	$\begin{gathered} \text { Auto } \\ 3 \end{gathered}$	Signal Out ： Interval LogOfRows：	Negative 00：00：00 1M	Relay MUX Channel DC Voltage		
Log to USE：	Off			Alarm： Total Ch	$\begin{array}{\|l\|l\|l\|} \hline 2 & \mathrm{~L} \\ \hline \text { nnels: } 003 \\ \hline \end{array}$	The set low limit of alarm
AlarmOut Setup			Digit Auto			\＃2 is triggered

Application: External Trigger

Background The external trigger uses the digital I/O pin for manual triggering of the DAQ-9600. To trigger the DAQ-9600 a pulse of $\geq 10 \mu$ s is required.

Signal connection

Connect the external trigger signal to the specific pins of Digital I/O port located on the rear panel.

Pin6 External Trigger Input pin
Connection

Activate
external
Press the Interval key on the front panel to enter the Interval menu. trigger

| TrigSource | |
| :---: | :---: | :---: | :---: |
| Auto z | Sweeps Sweeps INF |
| $3=7$ On Off | |

Press the TrigSource (F1) key to enter the trigger source menu followed by pressing the External (F4) to select External Trigger mode.

During a scan course, each sweep only starts when an external triggered signal is received.

Next sweep waits until External signal					
LOC [TMC		Hom	me S	目 1 (f)	$710: 37: 44$
(1) -	NONE	[(2) (0+2CH) Relay MUX] (3) 4×8] Matrix			
START	Next Sweep : Wait.(EXT)			Start Time: 202209119 10:37:42	
Setting				(CH 201]	
TrigSource: Sweeps Log to USE:	External3Off	Signal Out: Negative TrigSignal : Negative LogofRows: 1M		Relay MUX ChanneID AC Voltage	
				Total C	nels: 005
AlarmOut Setup					

SYSTEM \& FIRMWARE

View System Info 137
Firmware Update 138

View System Info

Background View system information including Vendor，Model Name， Serial Number，Master Firmware and Slave Firmware．

Step 1．Press the Menu key，the System configuration menu appears．And press the NEXT key repeatedly or scroll the Knob key to move to the Security\＆Info－
 SystemInfo field．

LOC GPIE］		Henu		目唯嗗 16：16：27	
System	Display	Interface	Lan Setup		
Beep ON On Key Sound ON IV 			Copy to USB Open		
			Copy Fr	U USB	pen
Datertime			Cali\＆Update		
Date	2022： 09	26	Calibration		Open
Time	16：16	：27	Firmware		Open
TimeSync Open			Security\＆Info		
Parameter			Security		Open
Save\＆L	d Open		Systeminfo		Open
Page Up	age Down	PREV	NEXT	Enter	Exit Menu

2．Press the F5（Enter）key or
Knob key to enter the System
Information where all the critical contents are exposed for check．

Firmware Update

Firmware	Update Update	Prior to update, make sure if the required firmware file is stored within the flash drive plugged into the USB port on the front panel.
	Also, user can check the current Master and Slave firmware version respectively in this menu.	

Prior to update, please rename the downloaded firmware files as below: \checkmark Master file: M_IMAGE.bin \checkmark Slave file: S_IMAGE.bin

1. Press the F5 (Enter) key or Knob key first, the qualified firmware version will show then.

Note: If flash drive has no update files, it will show as the figure below.

2. Press the NEXT key or scroll Knob key to move to the Update followed by pressing the F5 (Enter) key or Knob key to Start update.

Menu setting

Configure System 141
Beep Setting 141
Key Sound Setting 142
Date Setting 143
Time Setting 144
TimeSync Setting 145
Save and Load Parameters 146
Copy Parameters To USB 151
Copy Parameters From USB 152
Calibration Setting 154
Firmware Update 156
Security Setting 158
View System Info 160
Configure Display 161
Brightness Setting 161
Auto Off Setting 162
Auto Off Time Setting 163
1ST Color Setting 165
Math Color Setting 166
Display Mode Setting 168
Anti Aliasing Setting 170
Additional Info Setting 171
Language Setting 173

Configure System

Beep Setting

Background Enable or Disable Beep Sound.
Step

1. Press the Menu key, the System configuration menu appears.

2. Press the F5 (Enter) key or Knob key followed by scrolling Knob key or pressing +/- keys to land on the ON option.

Enter

LOC GPPB		Menu		哏 16:11:00
System	Display	Interface	Lan Setup	
Beep		ON I-	Copy to USB	Open
Key Sound		OFF	Copy From USB	Open
Dater		ON	Cali\&Update	
Date	2022: 09	26	Calibration Firmware	Open
Time	16 : 11	00		Open
TimeSync		Open	Security\&Info	
Parameter			Security Systeminfo	Open
Save\&Load		Open		Open
Page Up	Page Down	PREV	NEXT Enter	Exit Menu

3. Press the F5 (Enter) key or Knob key to select the ON option.

Key Sound Setting
Background Enable or Disable Key Sound．
Step
1．Press the Menu key，the System configuration menu appears．And

LOC GPIB		Menu		目 1 成碞 16：11：12	
System	Display	Interface	Lan Setup		
Beep		ON	Copy to USB		Open
Key Sc		ON I－	Copy From USB		Open
Daterime			Cali\＆Update		
Date	2022 09	09 26	Calibration		Open
Time	16： 11	11： 12	Firmware		Open
TimeSync		Open	Security\＆info		
Parameter			Security Systeminfo	Open	
Save ${ }^{\text {d }}$	d Open			Open	
Page Up	age Down	PREV	NEXT	Enter	Exit Menu

2．Press the F5（Enter）key or Knob key followed by scrolling Knob key or pressing $+/-$ keys to land on the On option．

Enter

LOC GPIB］		Menu			
System	Display	Interface	Lan Setup		
Beep		ON I－	Copy to USB		Open
Key Sound		ON IT	Copy From USB		Open
DaterT		OFF	Cali\＆Update		
Date	2022 ON	ON	Calibration Firmware	Open	
Time	16：11	19		Open	
TimeS	Open		Security\＆Info		
Parameter			Security Systeminfo	Open	
Save\＆	d Open			Open	
Page Up	age Down	PREV	NEXT	Enter	Exit Menu

3．Press the F5（Enter）key or Knob key to select the ON option for Key Sound．

Date Setting

Background Manually adjust date for system or automatically set date via TimeSync setting．

Step
1．Press the Menu key，the System configuration menu appears．And press the NEXT key repeatedly or scroll the Knob key to move to the Date／Time－Date field．

LOC GPIB		Menu		枵号 16：11：25
System	Display	Interface	Lan Setup	
Beep Key Sound		ON I－	Copy to USB	Open
		ON－	Copy From USB	Open
DaterTime			Cali\＆Update	
Date	2022： 09	26	Calibration	Open
Time	16： 11	25	Firmware	Open
TimeSync Open			Security\＆Info	
Parameter			Security Systeminfo	Open
SavesL	d Open			Open
Page Up	age Down	PREV	NEXT Enter	Exit Menu

2．Use the Left／Right keys to move the cursor followed by scrolling Knob key or pressing＋／－keys to define year of Date．Also，you
 can press Number keys to directly input a specific digit．

LOC［GPIE］		Menu		目10）	16：11：40
System	Display	Interface	Lan Setup		
Beep Key Sound		N－ 7	Copy to USB Open		
			Copy	USE	pen
DaterTime			Calii Update		
Date	2022： 09	26	Firmware		Open
Time TimeSync 16		： 40			pen
		pen	Security\＆info		
Parameter			Security Systeminfo		Open
Save\＆L		Open			Open
Page Up	age Down	PREV	NEXT	Enter	Exit Menu

3．Press the F5（Enter）key or Knob key to confirm the input digit for year of Date．

4．Repeat steps 2 to 3 for month and day．

Time Setting

Background Manually adjust time for system or automatically set time via TimeSync setting．

Step

1．Press the Menu key，the System configuration menu appears．And press the NEXT key repeatedly or scroll the Knob key to move to the Date／Time－Time field．

2．Use the Left／Right keys to move the cursor followed by scrolling Knob key or pressing＋／－keys to define hour of Time．Also，
 you can press Number keys to directly input a specific digit．

LOC GPIB		Menu		目的）嗗 16：11：57	
System	Display	Interface	Lan Setup		
Beep Key Sound		－ 1	Copy to USB		Open
		ON IV	Copy From USB		Open
DaterTime			CalisUpdate		
Date	2022： 09	09 26	Calibration		Open
Time	$16: 11$	11： 57			Open
TimeSync Open		Open	Security\＆Info		
	Parameter		Security Systeminfo		Open
Save\＆L	d Open				Open
Page Up	age Down	PREV	NEXT	Enter	Exit Menu

3．Press the F5（Enter）key or

4．Repeat steps 2 to 3 for minute and second．

TimeSync Setting

Background TimeSync is only available when connecting to internet with appropriate network setting.

Step

1. Press the Menu key, the System configuration menu appears. And press the NEXT key repeatedly or scroll the Knob key to move to the Date/Time - TimeSync field.

2. Press the F5 (Enter) key or Knob key to enter the Internet Time Sync menu.

Enter

Internet Time Synchronize

Enable Synchronize Enable or disable time sync
Check / Uncheck

Synchronize Server Choose remote server for time sync

	time.nust.gov / time-nw.nist.gov The 2nd server is available for user customization. Refer to page Error! Bookmark not defined. for SCPI setting.
Synchronize Now	Retrieve the currently standard time from the remote sever.
Synchronize Time	Define an interval to retrieve the currently standard time from the remote sever.
T Days / 14 Days / 30 Days	

Save and Load Parameters

Background The DAQ-9600 can save several instrument settings, which include the state, function, I/O and range settings. The Load function makes the saved settings or default setting to be recalled at the next power up or immediately.

Step 1. Press the Menu key, the System configuration menu appears. And press the NEXT key repeatedly or scroll the Knob key to move to the Parameter - Save\&Load field.

2. Press the F5 (Enter) key or Knob key to enter the Parameter Save\&Load menu.

Parameter
Save\&Load

Save

Select a
Group

1. Press the F5 (Enter) key or Knob

Enter key to open the dropdown menu.

2. Scroll the Knob key or pressing +/keys followed by pressing the F5 (Enter) key or Knob key to confirm the group selection.

3. Press the F5 (Enter) key or Knob
key to open the KeyBoard page.

4. Press the F2 (Backspace) key to clear default words.

5. Use the Left/Right and +/- keys or scroll the Knob key to move the cursor to desired word followed by pressing the F5 (Input) key or Knob key to input the word.

6. Press the F4 (OK) or the Knob key to confirm the input words.

Enter
7. Press the F5 (Enter) key or Knob key to saved the input words.

Load

Select a Group

1. Press the F5 (Enter) key or Knob
key to open the dropdown menu.

2. Scroll the Knob key or press +/- keys followed by pressing the F5 (Enter) key or Knob key to confirm the group selection.

3. The currently selected group name appears in the Note field.

LOC [GPIB			Menu		目 a (f) 嗗 16:14:02	
Systel	Parameter Save\&Load					
$\begin{aligned} & \text { Bee } \\ & \text { Key } \end{aligned}$	(Save)1.Select a Group				3 \|	
	(Save)2.Note (Save)3.Enter		ABC		Edit	
					Save	
Date	(Load)1.Select a Group				3 \|	
Tim	(Load)2.Note ABC					
Tim	(Load)3.Select a Action				None \|-	
	Return					
Page Up	Page Down			NEXT	Enter	Exit Menu

Select a
Action
4. Press the F5 (Enter) key or Knob

Enter
key to open the dropdown menu.

5. Scroll the Knob key or press +/- keys followed by pressing the F5 (Enter) key or Knob key to confirm the action selection.

6. Press the F5 (Enter) key or Knob
key to confirm the action selection.

Parameter None: no recall action
Power On: recall at next power up
Now: recall instantly

Copy Parameters To USB

Background This section introduces how to copy the parameters of DAQ-9600 to the connected USB disk.

Step

1. Press the Menu key, the System configuration menu appears. And press the NEXT key repeatedly or scroll the Knob key to move to the Copy To USB field.

LOC[CDC]		Menu			
System	Display	Interface	Lan Setup		
Beep Key Sound		ON -	Copy To USB Open		
		ON IV	Copy From USE Open		
Daterime			Cali\&Update		
Date	2022 01	01	Calibration Firmware		Open
Time	10: 52	52: 08			Open
TimeSync		Open	Security\&Info		
Parameter			Security Systeminfo		Open
SavesL		Open			Open
Page Up	age Down	PREV	NEXT	Enter	Exit Menu

2. Press the F5 (Enter) key or Knob key to bring about the
KeyBoard page.

Enter

3. Use the Left/Right and $+/$ - keys or scroll the Knob key to move the cursor followed by pressing the F5 (Input) key or the Knob key to specify a name for

Input parameters.

4．Press the F4（OK）key to confirm the parameters name and copy it to the connected USB disk．

5．The prompt message pops up and indicates the file of parameters is saved to the connected USB completely．

Copy Parameters From USB

Background This section introduces how to recall the saved parameters from the connected USB disk to DAQ－9600．

Step
1．Press the Menu key，the System configuration menu appears．And press the NEXT key repeatedly or scroll the Knob key to move to the Copy From USB field．

LOC［CDC）		Menu		目埕碞号10：53：13	
System	Display	Interface	Lan Setup		
Beep Key Sound		ON I－	Copy To USB		pen
		ON IV	Copy From USB Open		
DaterTime			Cali\＆Update		
Date	2022 01 10		Calibration		Open
Time	10： $53: 13$		Firmware		Open
TimeSy	Open		Security\＆info		
Parameter			Security Systeminfo	Open	
Save\＆	d Open			Open	
Page Up	ge Down	PREV	NEXT	Enter	Exit Menu

2．Press the F5（Enter）key or
Knob key to bring about the Choose the Load File page．

LOC］［CDC］		Menu		旬吅攷	13：30：36
Systel	Choose the Load File				
	NAME			DATE	
Bee	SAVEPAR43．SAV			2022／01／10 11：15	1
Key	SAVEPAR．SAV			2022／01／10 $10: 52$	1
Date					
Tim					
Tim					
Sav					
			OK		Exit

3．Use the $+/-$ keys or scroll the Knob key to move among parameters files within the list．

4．Press the $\mathrm{F} 4(\mathrm{OK})$ key to confirm the selection followed by entering

OK

 the Parameter Load Option page．

5．Scroll the Knob key to move between System and Scan
Parameters followed by pressing
 Knob key to select／unselect parameters．Press F4（OK）key to load parameters to DAQ－9600．

6．The prompt message indicates the selected parameters is loaded from the connected USB disk to DAQ－9600．

Calibration Setting

Background This section mainly provides several calibrations for frequency, DC gain and DMM. Note that only the certified technician can operate the calibration procedure. Refer to the qualified personnel for more details when necessary.

Steps

1. Press the Menu key, the System configuration menu appears. And press the NEXT key repeatedly or scroll the Knob key to move to the Cali\&Update - Calibration field.

2. Press the F5 (Enter) key or

Knob key to enter the
Calibration menu.

LOC GPIB		Menu			
Systeı	Calibration				
BeeKey \quadFREQ Compensate (1.005000) 					
				1.005000	
Date	DC Gain Calibration			Start	
Tim	(DMM)Step 1:Password (DMM)Step 2:Start Calibration			Start	
Sav	Return				
Page Up	Page Down	PREV	NEXT	Enter	Exit Menu

$\left.\begin{array}{lll}\hline \text { Frequency } \\ \text { Calibration }\end{array} \begin{array}{ll}\text { Frequency } \\ \text { Compensate } \\ (1.005000)\end{array} \quad \begin{array}{l}\text { Enable or disable frequency compensation } \\ \text { (the value indicates the compensation } \\ \text { coefficient; default: Factory calibration value) } \\ \text { Check the box to enable: } \\ \text { Frequency }=\text { Original Frequency x } \\ \text { Compensate Coefficient }\end{array}\right]$
2. Use the Left/Right keys to move the cursor followed by pressing the F5 (Enter) key to save the frequency compensation coefficient. The value changes as the figure shown below.

DC Gain		
Calibration	DC Gain Calibration	Click "Start" to execute DC Gain Calibration, which is an internally self-calibration function that does Not require external signal source.
	It corrects the gain of internal amplifier, though it is not necessary for general conditions unless the significant change in the gain of internal amplifier. It is suggested performing this calibration one time monthly.	
DMM	Calibration	The calibration procedure can be only executed by the certified technician in accordance with the standard instruments. Refer to the manufacturer or qualified personnel of authorized dealer for details.

Firmware Update

Background This section is for updating the latest firmware．
Step
1．Press the Menu key，the System configuration menu appears．And

LOC GPIB		Menu		目唯碞号 16：15：16	
System	Display	Interface	Lan Setu		
Beep Key Sound		ON IV	Copy to USB		pen
		ON IV	Copy From USE		pen
DaterTime			Cali\＆Update		
Date	2022： 09	26	Calibrat		pen
Time	$16: 15$	： 16	Firmwa		pen
TimeSync Open			Security\＆Info		
Parameter			Security Systeminfo		pen
Save\＆Load Open	Od Open				pen
Page Up	age Down	PREV	NEXT	Enter	Exit Menu

2．Press the F5（Enter）key or
Enter Knob key to enter the Firmware Update menu．

Firmware
Update

Update Prior to update，make sure if the required Process firmware file is stored within the flash drive
plugged into the USB port on the front panel． Also，user can check the current Master and Slave firmware version respectively in this menu．

1．Press the F5（Enter）key or Knob key first， the qualified firmware version will show then．

Note：If flash drive has no update files，it will show as the figure below．

2．Press the NEXT key or scroll Knob key to move to the Update followed by pressing the F5（Enter）key or Knob key to Start update．

LOC GPIB			Menu		目唯嗗 16：15：42	
Syste1	Firmware Update					
Bee Key Date Tim Tim Savi	Step 1：Check USB Files ＜Master＞Current：V0．82 ＜Slave＞Current：V0．90 Step 2：Update			New： New：	Check Start	1
Page Up	Page Down	PREV		NEXT	Enter	Exit Menu

Security Setting

Background This section is to change the password and enable or disable Lan password.

Step

1. Press the Menu key, the System configuration menu appears. And press the NEXT key repeatedly or scroll the Knob key to move to the Security\&Info - Security field.

2. Press the F5 (Enter) key or

3. Use the Left/Right and $+/$ - keys or scroll the Knob key to move the cursor followed by pressing the F5 (Input) key or the Knob key to input the password.

Input

4. Press the F4 (OK) key or Knob key to enter the Security page.

Security \begin{tabular}{ll}

Lan Password
Enable
:---
requirement for Lan web and telnet
Control.

\hline | Old Password |
| :--- | :--- | \& Enter the old password

\end{tabular}

View System Info
Background View system information including Vendor，Model Name， Serial Number，Master Firmware and Slave Firmware．

Step
1．Press the Menu key，the System configuration menu appears．And press the NEXT key repeatedly or scroll the Knob key to move to the Security\＆Info－
 SystemInfo field．

LOC GPIB		Wenu		目込	噊 16：16：27
System	Display	Interface	Lan Setup		
Beep Key Sound		ON I－	Copy to USB		Open
		ON IV	Copy From USB		Open
DaterTime			Cali\＆Update		
Date	2022： 09	26	Calibration		Open
Time	16：16	27	Firmware		Open
TimeSync Open			Security\＆Info		
Parameter			Security	Open	
Save\＆	d Open		Systeminfo	Open	
Page Up	age Down	PREV	NEXT	Enter	Exit Menu

2．Press the F5（Enter）key or
Enter Knob key to enter the System Information where all the critical contents are exposed for check．

Configure Display

Brightness Setting
Background Backlight brightness adjustment
Step

1. Press the Menu key followed by pressing the Page Down key
 repeatedly until the Display configuration menu appears.

LOC GPPB		Fle		(1) 吹高 11:22:28
System	Display	Interface	Lan Setup	
BackLight			Math Off Display	
Brightness		100	DisplayMode	OFF \|
Autooff		ON		
Auto 0	ime 030	min	BigFont Option	
Font Color			Antialiasing OFF	
1ST Color Wh		TE \|V	Other Option	
		WHITE \|	Additionallinf	Open
			Language	Open
Page Up	age Down	PREV	NEXT E	- Exit Menu

2. Use the Left/Right keys to move the cursor followed by scrolling Knob key or pressing +/- keys to define digit. Also, you can
 press Number keys to directly input a specific digit.

3. Press the F5 (Enter) key or Knob key to confirm the input digit for backlight brightness.

Auto Off Setting

Background Enable or disable automatic brightness adjustment

Step

1. Press the Menu key followed by pressing the Page Down key

repeatedly until the Display
configuration menu appears.

2. Press the NEXT key repeatedly or scroll the Knob key to move to the BackLight - AutoOff field.

3. Press the F5 (Enter) key or Knob key followed by scrolling Knob key or pressing $+/-$ keys to select the ON option.

Enter

4. Press the F5 (Enter) key or

Knob key to confirm the ON option for Auto Off.

Auto Off Time Setting

Background Set the duration before automatic brightness adjustment. When the machine has been idle for the set duration, the screen will change to automatic brightness adjustment.

NOTE: Auto Off Time will be activated only when Auto Off option is turned ON.

Step

1. Press the Menu key followed by pressing the Page Down key
 repeatedly until the Display configuration menu appears.

2. Press the NEXT key repeatedly or scroll the Knob key to move to the BackLight - AutoOffTime field.

3. Use the Left/Right keys to move the cursor followed by scrolling Knob key or pressing +/- keys to define minutes. Also, you can press Number keys to directly input a specific minutes.

LOC GPIE		Menu		目 1 (f) 碞 11:22:53	
System	Display	Interface	Lan Setup		
BackLight			Math Off Display		
Brightness AutoOff		100 \%	DisplayMode	OFF	
		ON \|			
Auto0i	Time 330	min	BigFont Option		
Font Color			Antialiasing OFF		
1ST Color Wh		TE \|V	Other Option		
Math Color		WHITE -	Additionallnfo	Open	
		Language	Open		
Page Up	age Down		PREV	NEXT Enter	Exit Menu

4. Press the F5 (Enter) key or Knob key to confirm the input minutes for Auto Off Time.

1ST Color Setting

Background Set the theme color of 1ST display
1．Press the Menu key followed by pressing the Page Down key
 repeatedly until the Display configuration menu appears．

2．Press the NEXT key repeatedly or scroll the Knob key to move to the Font Color－1ST Color field．

LOC GPIE		Fienu		目成阿喊 11：23：12	
System	Display	Interface	Lan Setup		
BackLight			Math Off Display		
Brightness		100 \％	DisplayMode	OFF	
AutoOff		ON｜－			
Auto 0	frTime 33	334 min	BigFont Option		
Font Color			Antialiasing	OFF	
1ST Color		WHITE IV	Other Option		
Math Color		WHITE I－	Additionallnfo Language	Open	
		Open			
Page Up	Page Down		PREV	NEXT Enter	Exit Menu

3．Press the F5（Enter）key or Knob key followed by scrolling Knob key or pressing＋／－keys to select desired color for 1ST

Enter display．

4. Press the F5 (Enter) key or Knob key to confirm the selected color.

Display result The following figure demonstrates the defined yellow color for 1ST display.

Math Color Setting
Background Set the theme color of Math functions
Step

1. Press the Menu key followed by pressing the Page Down key

repeatedly until the Display configuration menu appears.

2. Press the NEXT key repeatedly or scroll the Knob key to move to the Font Color - Math Color field.

3. Press the F5 (Enter) key or Knob key followed by scrolling Knob key or pressing +/- keys to select desired color for Math

Enter display.

LOC GPIE		Menu		(1) 㿽号 11:24:01	
System	Display	Interface	Lan Setup		
BackLight			Math Off Display		
Brightness			DisplayMode	OFF \|	
AutoOff AutoOffTime		ON \|			
		WHITE	BigFont Option		
Font C		GREEN	Antialiasing OFF		
1ST Color		YELLOW CYAN	Other Option		
		Additionallnfo	Open		
Math Color 1			WHITE 1-	Language	Open
Page Up	Page Down	PREV	NEXT Enter	Exit Menu	

4. Press the F5 (Enter) key or Knob key to confirm the selected color.

Display result The following figure demonstrates the defined green color for Math display.

Display Mode Setting

Background Enable or disable if time info or user－defined text is shown in the 1ST display only when MathDisp is off．

Step

1．Press the Menu key followed by pressing the Page Down key
 repeatedly until the Display configuration menu appears．

2．Press the NEXT key repeatedly or scroll the Knob key to move to the Math Off Display－ DisplayMode field．

LOC GPIE		Menu		目成）嗗 11：24：31
System	Display	Interface	Lan Setup	
BackLight			Math Off Display	
Brightness		100	Display ${ }^{\text {a }}$（	OFF
AutoOff				
AutoOffTime		334 m	BigFont Option	
Font Color			Antialiasing	OFF IV
1ST CoMath C	YELLOW｜－		Other Option	
			Additionalinfo Language	Open
	Color GR	EN		Open
Page Up	Page Down	PREV	NEXT Enter	Exit Menu

Time display

1. Press the F5 (Enter) key or Knob key followed by scrolling Knob key or pressing +/- keys to select the Time option.

Enter

LOC GPIB		M Menu			
System	Display	Interface	Lan Setup		
BackLight			Math Off Display		
Brightness		100%	Displaymode		OFF
Autooff		ON I-	OFF		
Auto	frTime 33	334 min	BigFont (Time		
Font Color			Antialiasing		OFF
1ST Color YEL		OW 1	Other Option		
		GREEN \|-	Additionallnfo Language		Open
					pen
Page Up	Page Down	PREV	NEXT	Enter	Exit Menu

2. Press the F5 (Enter) key or Knob key to confirm the Time option.

Display result The following figure demonstrates the time info shown in the 1 ST display.

Anti Aliasing Setting

Background Enable or disable the anti-aliasing function, which facilitates the display of measured value much smoother and easy-readable. Note that this function is available for up to $1.2 \mathrm{k} / \mathrm{s}$ refresh rate. The $2.4 \mathrm{k} / \mathrm{s}$ above refresh rates are Not supported by anti-aliasing.
! NOTE: When Auto Zero or dual measure mode, both of which lower down computing speed, is activated, anti-aliasing function can support up to the maximum $10 \mathrm{k} / \mathrm{s}$ refresh rate.

Step

1. Press the Menu key followed by pressing the Page Down key
 repeatedly until the Display configuration menu appears.

2. Press the NEXT key repeatedly or scroll the Knob key to move to the BigFont Option Antialiasing field.

LOC [GPIE]		Menu			
System	Display	Interface Lan Setup			
BackLight			Math Off Display		
Brightness AutoOff		100%	DisplayMode Time IV		
		ON -			
AutoOffTime $\quad 334 \mathrm{~min}$ Font Colo			BigFont Option		
			Antialia	ing 0	F
1ST Color YEL		YELLOWIV	Other Option		
			Additio	allnfo	pen
Math Color G		GREEN [-	Language		Open
Page Up	Page Down	PREV	NEXT	Enter	Exit Menu

3. Press the F5 (Enter) key or Knob key followed by scrolling Knob key or pressing +/- keys to select the ON option.

Enter

4. Press the F5 (Enter) key or Knob key to confirm the ON selection.

Additional Info Setting
Background Enable or disable the additional information display.
Step

1. Press the Menu key followed by pressing the Page Down key
 repeatedly until the Display configuration menu appears.

LOC GPIE		Menu			
System	Display	Interface	Lan Setup		
BackLight			Math Off Display		
Bright	ness 10	100%	DisplayMode	OFF	
Auto 0		ON \|-	BigFont Option		
Auto 0	frTime 03	030 min			
Font Color			Antialiasing OFF \|-		
1ST Color WH		WHITE \|-	Other Option		
Math Color WW		WHITE \|-	Additionallnfo Language	Open	
		Open			
Page Up	Page Down		PREV	NEXT Enter	E Exit Menu

2. Press the NEXT key repeatedly or scroll the Knob key to move to the Other Option AdditionalInfo field.

3. Press the F5 (Enter) key or Knob key to enter the Additional menu. Press the Next key or scroll the Knob key followed by pushing the F5 (Enter) key or

NEXT Knob key to enable/disable each option. Move to the Return option followed by pressing the F5 (Enter) key or Knob key to have the setting take effect.

Display result Take the Strain measurement with MX + B calculation for example as the figure below, we can clearly recognize the colors with info as follows.

- Offset Value Info is outlined by blue frame.
- Auto Zero Info is outlined by white frame.
- Other Info is outlined by cyan frame.

Language Setting
Background Select language for user interface display.
Step

1. Press the Menu key followed by pressing the Page Down key
 repeatedly until the Display configuration menu appears.

2. Press the NEXT key repeatedly or scroll the Knob key to move to the Other Option - Language field.

3．Press the F5（Enter）key or Knob key to enter the Language menu．Press the Next key or scroll the Knob key followed by pushing the F5（Enter）key or

Enter

NEXT Knob key to select one of the language options．Move to the Return option followed by pressing the F5（Enter）key or Knob key to have the setting take effect．

English
Options 繁體中文（Traditional Chinese）
简体中文（Simplified Chinese）

Remote control

Configure Interface 176
Return to Local Control Mode 176
Configure SCPI ID Setting 176
Configure USB Interface 177
Set the USB Protocol 180
Configure GPIB Interface 181
Activate Ethernet Interface 184
LAN Connect Delay Time 185
Reboot LAN Setup 186
Configure Ethernet Interface to DHCP 187
Configure Ethernet IP 188
Configure Protocol 194
Remote Terminal Session (Telnet / TCP) 200
Web Control Interface 201
Command Syntax 206
Command Set 209
Status system 327

Configure Interface

Return to Local Control Mode

Background When the unit is in remote control mode, the RMT icon RMTI above the main display can be seen. When this icon is not displayed, it indicates that the unit is in local control mode.

In order to switch back to the Local control mode (front panel operation),
 press the Shift key.

Configure SCPI ID Setting

Background The *IDN? query returns the manufacturer, model number, serial number and system firmware version number. When SCPI ID is set to User, a user defined manufacturer and model number is returned with the *IDN? query. Please see the SYSTem:IDNStr command on page 323 for details.

Step	Press the Menu key, and then the Page Down key repeatedly until the Interface configuration menu appears.

LOC TMMC]		Menu		旬1(f) 嗗 15:25:41	
System	Display	Interface	Lan Setup		
Interfac	USB IV		LanConnDelay 01		
			USB		
			Protoco	USE	TMC ${ }^{-17}$
			GPIB		
			Address		15
			SCPID		
			Identity		ult ${ }^{\text {P }}$
Page Up	age Down	PREV	NEXT	Enter	Exit Menu

2. Press the F4 (NEXT) key repeatedly or scroll the Knob key to move to the SCPI ID field.

LOC [TMC]		Menu				
System	Display	Interfa	Lan Setup			
Interface US		SB \|-	$\begin{array}{c\|cc} \text { LanConnDelay } 01 \\ \text { USE } \end{array}$			
		Protocol	USB	MC\|V		
		GPIB				
		Address		15		
		SCPI ID				
		Identity		ult ${ }^{\text {- }}$		
Page Up Page Down			PREV	NEXT	Enter	Exit Menu

3. Press the F5 (Enter) key or Knob key followed by scrolling Knob key or pressing +/- keys to land on the desired SCPI ID Identity

Enter option.

LOC TMC		Menu		目 1 () 嗗 15:25:56	
System	Display	Interface	Lan Setup		
Interface US		B \|-	LanConnDelay 01 sec		
			Protoco	USBTMC ${ }^{\text {- }}$	
			GPIB		
			Address	Default	
				SCPI	User
			Identity	Default \|-	
Page Up	Page Down	PREV	NEXT	Enter	Exit Menu

4. Press the F5 (Enter) key or Knob key again to confirm the desired SCPI ID Identity option

Configure USB Interface

USB Configuration	PC side connector	Front panel, Type A, host
	Unit side connector Real panel, Type B, device	
USB Speed $\quad 2.0$ (Full speed)		

2. Press the F5 (Enter) key or Knob key followed by scrolling Knob key or pressing +/- keys to land on the USB option.

Enter

LOC TMC		MenL				
System	Display	Interface	Lan Setup			
		IV	LanConnDelay 01 sec USB			
		SB				
		$\begin{aligned} & \text { LAN } \\ & \text { GPIB } \end{aligned}$	Protocol	USBTMC ${ }^{\text {- }}$		
		GPIB				
			Address	15		
		SCPI ID				
		Identity	Default \| ${ }^{\text {P }}$			
Page Up	Page Down		PREV	NEXT	Enter	Exit Menu

3. Press the F5 (Enter) key or Knob key to select the USB option.

4. Press the F4 (NEXT) key repeatedly or scroll the Knob key to move to the USB Protocol field.

LOC TMMC		Me		目 1(1)	15:26:26
System	Display	Interface	Lan Setup		
Interface u		USB \|V	LanConnDelay 01 sec USB		
			Protocol USBTMC\|>		
			GPIB		
			Address		15
			SCPI ID		
			Identity		Default \|-
Page Up	age Down	PREV	NEXT	Enter	Exit Menu

5. Press the F5 (Enter) key or

Knob key followed by scrolling Knob key or pressing +/- keys
 to land on the desired USB

Enter

Protocol option.

LOC TMC]		Menu			
System	Display	Interface	Lan Setup		
Interface US		B \|-	LanConnDelay USBCDC		
			Protocol USBTMClV		
			GPIB		
			Address		15
			SCPI ID		
			Identity D		ult \|V
Page Up	Page Down	PREV	NEXT	Enter	Exit Menu

6. Press the F5 (Enter) key or Knob key again to confirm the USB Protocol option.

7. Connect the USB cable to the rear panel terminal (upper port).

Set the USB Protocol

Description The USB device port on the rear panel is used for remote control. The USB port can be configured as either a TMC or CDC interface.

Before the DAQ-9600 can be used for remote control utilizing the CDC or TMC USB class, install the appropriate CDC or TMC USB driver included on the User Manual CD.

USBCDC:
The USB port on the DAQ-9600 will appear as a virtual COM port to a connected PC.
USBTMC:
The DAQ-9600 can be controlled using National Instruments NI-Visa software*. NI-Visa supports USB TMC.
*To use the TMC interface National Instruments Measurement and Automation Explorer can be used. This program is available on the NI website, www.ni.com., via a search for the VISA Run-time Engine page, or "downloads" at the following URL, http://www.ni.com/visa/

Configure GPIB Interface

2. Press the F5 (Enter) key or Knob key followed by scrolling Knob key or pressing +/- keys to land on the GPIB option.

Enter

3. Press the F5 (Enter) key or Knob key to select the GPIB option.

4. Press the F4 (NEXT) key repeatedly or scroll the Knob key to move to the GPIB Address field.

LOC［GPIE］		Menu		可1（f）哏员 15：27：24		
System	Display	Interface Lan Setup				
Interface GP		I－	$\begin{gathered} \text { LanConnDelay } 01 \text { see } \\ \text { USB } \end{gathered}$			
		Protoco	USB	MC ${ }^{\text {－}}$		
		GPIB				
		Address		30		
		SCPIID				
		Identity		ult ${ }^{\text {a }}$		
Page Up	Page Down		PREV	NEXT	Enter	Exit Menu

5．Use the Left／Right keys to move the cursor followed by scrolling Knob key or pressing
 ＋／－keys to define GPIB
Address．Also，you can press
Number keys to directly input a specific digit．

LOC GPIB］		Menu		目成）嗗 15：44：18		
System	Display	Interface	Lan Setup			
Interface G		GPIB｜－	LanConnDelay 09 seeUSB			
		Protocol	USBTMC ${ }^{\text {－}}$			
		GPIB				
		Address		30		
		SCPI ID				
		Identity		ult｜V		
Page Up	Page Down		PREV	NEXT	Enter	Exit Menu

6．Press the F5（Enter）key or Knob key again to confirm the input digit for GPIB Address．

Enter

7. Connect the GPIB cable to the mini GPIB port from the rear panel of DAQ-9600.

GPIB Pin Assignment	Pin Signal		Pin Signal	
	1	Data I/O 1		
	2	Data I/O 2	14	Data I/O 6
	3	Data I/O 3	15	Data I/O 7
	4	Data I/O 4	16	Data I/O 8
	5	EOI	17	REN
	6	DAV		Ground (DAV)
	7	NRFD		Ground (NRFD)
	8	NDAC		Ground (NDAC)
	9	IFC		Ground (IFC)
	10	SRQ		Ground (SRQ)
	11	ATN		Ground (ATN)
	12	SHIELD Ground		Logic Ground

Mini GPIB

8 NDAC 20 Ground (NDAC)
9 IFC 21 Ground (IFC) Ground

13 Data I/O 525 NC

Activate Ethernet Interface

Overview Speed 10BaseT/100BaseTx

Ethernet(LAN) port activation
0. Press the Menu key, and then the Page Down key repeatedly
 until the Interface configuration menu appears.

1. Press the F5 (Enter) key or Knob key followed by scrolling Knob key or pressing +/- keys to land on the LAN option.

Enter

2. Press the F5 (Enter) key or

3. Connect the Ethernet cable to the rear panel Ethernet port.

LAN Connect Delay Time

Background	r is able nection	to set when		time in sec up the DA	d(s) for)-9600.
LAN Connect Delay Setting	Press the Pa until the config	he Me e Dow Inte ration	u key, n key face menu	and then epeatedly appears.	
	LOC[LAN]		M	4 - 410	15:40:53
	System	Display	Interface	Lan Setup	
	Interíac	LA	\|7	LanConnDelay	$9 \text { sec }$
				Protocol US	TMC\|V
				GPIB	
				Address	27
				SCPIID	
				Identity De	ault ${ }^{\text {P }}$
	Page Up	age Down	PREV	NEXT Enter	Exit Menu

2. Press the F4 (NEXT) key repeatedly or scroll the Knob key to move to LAN Connect Delay Time.

3. Use the Left/Right keys to move the cursor followed by scrolling Knob key or pressing +/- keys to set LAN Connect Delay Time. Also, you can press Number keys to directly input a specific digit.

LOC LAN]		Fienu			
System	Display	Interface	Lan Setup		
Interface LA		LAN \|-	LanConnDelay 33 sec		
			USB		
			Protoco	USBTMC ${ }^{\text {- }}$	
			GPIB		
			Address		7
			SCPI ID		
			Identity	Default \|	
Page Up	Page Down	PREV	NEXT	Enter	Exit Menu

4. Press the F5 (Enter) key or Knob key again to confirm the LAN Connect Delay Time.

Reboot LAN Setup
Background To reboot is used to reset the Ethernet configuration when new settings have been made. When the Lan Setup settings have been edited, reboot to validate the changes and reset the Ethernet to the new configuration settings. New Ethernet configuration settings are only updated after the DAQ-9600 has been reset.

LOC TMC		Menu		
System	Display	Interface	Lan Setup	
DHCP	OFF \|-		MAC Address 002224000000	
IP Address Setup			Protocol	
IP Address	s 172.016	001. 100	Web	ON
Subnet	255.255	255.000	Telnet	ON IV
Gateway	172. 016	001. 254	Telnet Port	03000
DNS1	172. 016	001.252	Telnet ECHO	0 ON IV
DNS2	172. 016	001.248	TCP	ON I-
Need reboot to change the config			TCP Port	03001
Page Up Pa	age Down	PREV	NEXT E	Enter Exit Menu

Configure Ethernet Interface to DHCP

Background The DAQ-9600 supports DHCP to have an IP address and other configuration parameters automatically assigned by a DHCP server.

DHCP
 Configuration

1. Press the Menu key, and then the Page Down key repeatedly
 until the Lan Setup configuration menu appears.

2. Press the F5 (Enter) key or Knob key followed by scrolling Knob key or pressing +/- keys to land on the ON option.

Enter

3. Press the F5 (Enter) key or Knob key to select the DHCP ON option.

Configure Ethernet IP

Background The DAQ-9600 supports manually setting of IP addresses, including the subnet mask, gateway, DNS1 and DNS2.

The IP Address Setup can only be edited if DHCP is off.

IP Address
Configuration

1. Press the Menu key, and then the Page Down key repeatedly
 until the Lan Setup configuration menu appears.

LOC TMC]		Menu				
System	Display	Interface	Lan Setup			
DHCP	OFF \|-		MAC Address 002224000000			
IP Address Setup			Protocol			
IP Address	ess 172.016	001.100	Web	ON \|-		
Subnet	255.255	255.000	Teinet	ON - ${ }^{\text {- }}$		
Gateway) 172.016	001. 254	Telnet Port TeInet ECHO		03000	
DNS1	172.016	001. 252			ON	
DNS2	172.016	001. 248	TCP		ON \|-	
Need reboot to change the config			TCP Port	03001		
Page Up	Page Down	PREV	NEXT	Enter	Exit Menu	

2. Press the F4 (NEXT) key repeatedly or scroll the Knob key to move to the IP Address Setup - IP Address field.

3. Use the Left/Right keys to move the cursor followed by scrolling Knob key or pressing +/- keys to define IP Address. Also, you can press Number
 keys to directly input a specific digit.

4. Press the F5 (Enter) key or

Knob key to confirm the input digit for IP1 Address. And the cursor will automatically jump
 to next groups.
5. Repeat the steps 3 to 4 for IP2, IP3 and IP4.

Subnet
Configuration

The IP address is divided in 4 groups; IP1:IP2:IP3:IP4.
6. Press the F4 (NEXT) key repeatedly or scroll the Knob key to move to the IP Address Setup - Subnet field.

7. Use the Left/Right keys to move the cursor followed by scrolling Knob key or pressing $+/$ - keys to define Subnet.
 Also, you can press Number keys to directly input a specific digit.

8. Press the F5 (Enter) key or Knob key again to confirm the input digit for S1. And the cursor will automatically jump
 to next groups.
9. Repeat steps 7 to 8 for $\mathrm{S} 2, \mathrm{~S} 3$ and S 4 .

Gateway Configuration
10. Press the F4 (NEXT) key repeatedly or scroll the Knob key to move to the IP Address Setup - Gateway field.

11．Use the Left／Right keys to move the cursor followed by scrolling Knob key or pressing ＋／－keys to define Gateway． Also，you can press Number
 keys to directly input a specific digit．

LOC］［TMC］	Menu	颔 13：54：14

12．Press the F5（Enter）key or Knob key to confirm the input digit for G1．And the cursor will automatically jump to next
 groups．

13．Repeat steps 11 to 12 for G2，G3 and G4．

DNSI
Configuration

14．Press the F4（NEXT）key repeatedly or scroll the Knob key to move to the IP Address Setup－DNS1 field．

LOC TMC		Menu		目听）碞号 13：54：31	
System	Display	Interface	Lan Set		
DHCP OFF｜－			MAC Address 002224000000		
IP Address Setup					
IP Address	ess 235.233	001． 255	Web Telnet		
Subnet	255.255	155． 235		ON	
Gateway	） 255.255	001． 255	Teinet Port	33233	
DNS1	255.255	001． 252	Telnet	ON IV	
DNS2	172． 016	001． 248	TCP	ON	
Need reboot to change the config			TCP Port	33331	
Page Up	Page Down	PREV	NEXT	Enter	Exit Menu

15. Use the Left/Right keys to move the cursor followed by scrolling Knob key or pressing $+/$ - keys to define DNS1. Also,
 you can press Number keys to directly input a specific digit.

16. Press the F5 (Enter) key or Knob key again to confirm the input digit for D11. And the cursor will automatically jump to next groups.

17. Repeat steps 15 to 16 for D12, D13 and D14.

The Gateway is divided in 4 groups; D11:D12:D13:D14.

DNS2

Configuration
18. Press the F4 (NEXT) key repeatedly or scroll the Knob key to move to the IP Address Setup - DNS2 field.

LOC TMMC		Menu			
System	Display	Interface	Lan Setup		
DHCP OFF \|-			MAC Address 002224000000		
IP Address Setup					
IP Address	-ess 235.233	001. 255	Web	ON \|-	
Subnet	255.255	155.235	Telnet	ON I-	
Gateway	255.255	001. 255	Telnet Port TeInet ECHO	33233	
DNS1	255.255	001. 255		ON	
DNS2	255.233	001. 248	TCP		Iv
Need reboot to change the config			TCP Port	33331	
Page Up	Page Down	PREV	NEXT	Enter	Exit Menu

19. Use the Left/Right keys to move the cursor followed by scrolling Knob key or pressing +/- keys to define DNS2. Also,
 you can press Number keys to directly input a specific digit.

LOC TMC		Menu			
System	Display	Interface	Lan Setup		
DHCP OFF \|-			MAC Address 002224000000		
IP Address Setup			Protocol		
IP Address	ess 235.233	001. 255	Web	ON \|-	
Subnet	255.255	155. 235	Telnet Telnet Port	ON -	
Gateway	255.255	001. 255		33233	
DNS1	255.255	001.255	Telnet Port Teinet ECHO	ON IV	
DNS2	255.233	001. 233	TCP		ON IV
Need reboot to change the config			TCP Port	33331	
Page Up	Page Down	PREV	NEXT	Enter	Exit Menu

20. Press the F5 (Enter) key or Knob key again to confirm the input digit for D21. And the cursor will automatically jump

Enter

 to next groups.
21. Repeat steps 20 to 21 for D22, D23 and D24.

The Gateway is divided in 4 groups; D21:D22:D23:D24.

Configure Protocol

Background The DAQ-9600 supports 3 Ethernet protocol to used, including the Web browser, Telnet and TCP.

Web
Configuration

1. Press the Menu key, and then the Page Down key repeatedly
 until the Lan Setup configuration menu appears.

2. Press the F4 (NEXT) key repeatedly or scroll the Knob key to move to the Protocol Web field.

3. Press the F5 (Enter) key or Knob key followed by scrolling Knob key or pressing +/- keys to land on the ON option.

Enter

4．Press the F5（Enter）key or Knob key to confirm the Web ON option．

Telnet
Configuration

5．Press the F4（NEXT）key repeatedly or scroll the Knob key to move to the Protocol－ Telnet field．

LOC TMC		Men		目成）嗗 13：42：59	
System	Display	Interface	Lan Setup		
DHCP OFF｜－			MAC Address 002224000000		
IP Address Setup			Protocol		
IP Address	ess 255.016	233.100	Web	ON I－	
Subnet	255.255	233.000	Telnet	ON ${ }^{-17}$	
Gateway	y 255.255	． 001.254	Telnet Port Telnet ECHO		
DNS1	255.235	235． 235			ON I－
DNS2	255.234	225． 248	TCP		ON IV
Need reboot to change the config			TCP Port		03001
Page Up	Page Down	PREV	NEXT	Enter	Exit Menu

6．Press the F5（Enter）key or Knob key followed by scrolling Knob key or pressing＋／－keys to land on the ON option．

Enter

LOC TMC		Henu		目成）踊 13：43：03	
System	Display	Interface	Lan Setup		
DHCP OFF｜－			MAC Address 002224000000		
IP Address Setup			Protocol		
IP Address	ess 255.016	233.100	Web	ON －	
Subnet	255.255	233． 000	Telnet	ON －	
Gateway	255.255	001． 254	Telnet Port TeInet ECHO	OFF	
DNS1	255.235	235.235		ON	
DNS2	255.234	225． 248	TCP		N
Need reboot to change the config			TCP Port	03001	
Page Up	Page Down	PREV	NEXT	Enter	Exit Menu

7. Press the F5 (Enter) key or Knob key to confirm the Telnet ON option.

Telnet Port
Configuration
8. Press the F4 (NEXT) key repeatedly or scroll the Knob key to move to the Protocol Telnet Port field.

9. Use the Left/Right keys to move the cursor followed by scrolling Knob key or pressing +/- keys to define Telnet Port.
 Also, you can press Number keys to directly input a specific digit.

10. Press the F5 (Enter) key or Knob key to confirm the input digit for Telnet Port.

Range \quad 1024~65535 (Default $=3000$)

Telnet ECHO
Configuration
11. Press the F4 (NEXT) key repeatedly or scroll the Knob key to move to the Protocol Telnet ECHO field.

12. Press the F5 (Enter) key or Knob key followed by scrolling Knob key or pressing +/- keys to land on the ON option.

Enter

LOC TMC		Menu			
System	Display	Interface	Lan Setup		
DHCP OFF \|-			MAC Address 002224000000		
IP Address Setup			Protocol		
IP Address	ess 255.016	. 233.100	Web Telnet	ON \|	
Subnet	255.255	. 233.000		OFF	
Gateway) 255.255	. 001.254	Telnet Port	ON	
DNS1	255.235	. 235.235	Teinet ECHO	ON	
DNS2	255.234	. 225.248	TCP	ON -	
Need reboot to change the config			TCP Port	03001	
Page Up	Page Down	PREV	NEXT	Enter	Exit Menu

13．Press the F5（Enter）key or Knob key again to confirm the Telnet ECHO ON option．

TCP

Configuration
14．Press the F4（NEXT）key
NEXT repeatedly or scroll the Knob key to move to the Protocol－ TCP field．

LOC TMC		Henu		目埕嗗 13：43：46	
System	Display	Interface	Lan Setup		
DHCP OFF｜－			MAC Address 002224000000		
IP Address Setup			Protocol		
IP Addre	ess 255.016	233． 100	Web		－
Subnet	255.255	． 233.000	Teinet		－ 1
Gateway	） 255.255	． 001.254	Telnet P		233
DNS1	255.235	． 235.235	Teinet E		－
DNS2	255.234	． 225.248	TCP		－
Need reboot to change the config			TCP Port		0001
Page Up	Page Down	PREV	NEXT	Enter	Exit Menu

15．Press the F5（Enter）key or Knob key followed by scrolling Knob key or pressing＋／－keys to land on the ON option．

Enter

16．Press the F5（Enter）key or Knob key again to confirm the TCP ON option

TCP Port
Configuration

17．Press the F4（NEXT）key repeatedly or scroll the Knob key to move to the Protocol－ TCP Port field．

18. Use the Left/Right keys to move the cursor followed by scrolling Knob key or pressing $+/-$ keys to define TCP Port.
 Also, you can press Number keys to directly input a specific digit.

Range $\quad 1024 \sim 65535($ Default $=3001)$
19. Press the F5 (Enter) key or

Knob key again to confirm the input digit for TCP Port.

Remote Terminal Session (Telnet / TCP)

Background	A terminal application can be used to remotely control the DAQ-9600 via the Telnet or TCP protocol.
Operation	1. Establish a connection via the Ethernet port.

2. Open a terminal program such as Hyper Terminal and enter the IP address and port number of the DAQ-9600.
3. Run this query via the terminal application:
*idn?
The command will return the instrument manufacturer, model number, serial number and firmware version in the following format: >GWInstek,DAQ9600,000000000,M0.69B_S0.25B
4. See page 206 for more details on remote commands.

Web Control Interface

The web control interface is accessible with the standard Ethernet port. The web control interface allows remote access over LAN using a Java-enabled web browser (Java only applicable to Internet Explorer).

The web control interface allows a web browser to modify parameter settings, remotely operate, control and monitor the DAQ-9600.

Telnet and TCP parameters can also be edited by using the web control interface so that applets such as HyperTerminal or Telnet can be used to monitor measurement readings, control settings and run programs utilizing the same remote control command set used with the RS232 remote control.

Background	Before trying to access the web browser control interface, please ensure your browser has JavaScript enabled.
Step 1 - Connection	1. Configure the LAN interface and connect the DAQ-9600 to the LAN..
	2. Enter the IP address of the DAQ-9600 in the address field of the web browser.
	3. The web control Welcome Page appears.
	GWITSTEK Good will Instrument co., Ltd.

2. The control page appears, a dialog box will appear prompting for a password. Input the password (default password: 12345678) if Lan password has been enabled previously.

데 1 IEK Good Will Instrument Co., Ltd.

Step 2-1 -
Configuration
3. Setting the basic operations and monitor measurement readings, press apply button to enable the control settings when parameters have changed.

Step 2-2 -
Command
4. It is available for remote control by manually inputting the command sets.

Step 2-3-
Save / Load
5. Also, to save and load the multiple settings of parameters are available.

Step 2-4 -
Graphic
6. Several graphic display modes are available. To change different display modes, press the "Apply" button followed by clicking the "Get Picture" button to update to the desired display mode.

Step 3 -
 View and Modify
 The current Ethernet settings can be viewed and modified from the web control interface.
 LAN Configuration

1. To edit or view the current configuration settings, click on the View \& Modify
Configuration icon.
2. The configuration settings appear.

Miscellaneous Settings

Name:	DMM
Serial Number:	000000000
Master Firmware:	0.69 B
Slave Firmware:	0.25 B
IP Address:	192.168 .31 .117
MAC Address:	$00-22-24-00-00-01$

IP Address Settings

Address Type:	DHCP	
Static IP Address:	192. 168.31	. 117
Subnet Mask:	255. 255.248	- 0
Default Gateway:	192. 168. 31	254
DNS:	172.16. 1	$\cdot 252,172 \cdot 16 \cdot 1 \cdot 248$
Update Setings		

General Configuration Settings

Module Name:	DMM						
TCP Enable:	ON \checkmark						
TCP port number:	3001	(1024~65535)					
Teinet Enable:	ON \checkmark						
Teinet port number:	3000	(1024~65535)					
Telnet ECHO:	OFF \checkmark						
Telnet Timeout:	0	seconds(0 for no timeout)					
							Update Setings

Password Modify

Old Password:	(4-8 characters numeric)
New Password:	(4-8 characters numeric)
Confirm Password:	
	Modify

Restore Factory Defaults

Restore all options to their factory default states:	Restore Defaults

DMM Reset

DMM need Reset to If Parameter has Change:	Reset

3. The View \& Modify Configuration page allows you to:

- View the instrument name, firmware revision of the Ethernet card, IP address and MAC address.
- Set the IP address to DHCP or static.
- Configure the module host name and the parameters of TCP \& telnet.
- Modify the web password.
- Restore the Ethernet to the factory default settings (equivalent to the INIT function).
- Reset: reboot to make the new setting take effect when any parameter is modified.

Command Syntax

Compatible IEEE488.2 Partial compatibility
Standard SCPI, 1994 Partial compatibility
Command SCPI (Standard Commands for Programmable Instruments) Structure commands follow a tree-like structure, organized into nodes. Each level of the command tree is a node. Each keyword in a SCPI command represents each node in the command tree. Each keyword (node) of a SCPI command is separated by a colon (:).

For example, the diagram below shows an SCPI sub-structure and a command example.

Command There are a number of different instrument commands and Types queries. A command sends instructions or data to the unit and a query receives data or status information from the unit.

Command types
Simple A single command with/without a parameter
Example CONFigure:VOLTage:DC

	Query	A query is a simple or compound command followed by a question mark (?). A parameter (data) is returned.	
	Example	CONFigure:RAN	
Command Forms	Commands and queries have two different forms, long and short. The command syntax is written with the short form of the command in capitals and the remainder (long form) in lower case.		
	The commands can be written either in capitals or lower-case, just so long as the short or long forms are complete. An incomplete command will not be recognized.		
	Below are examples of correctly written commands.		
	Long form		
	CONFigure:DIODe		
	CONFIGURE:DIODE		
	Configure:diode		
	Short form	CONF:DIOD conf:diod	
Square Brackets	Commands that contain square brackets indicate that the contents are optional. The function of the command is the same with or without the square bracketed items, as shown below. For example, for the query:		
[SENSe:]UNIT?			
Both SENSe:UNIT? and UNIT? are valid forms.			
Command Format			
	1. Command header		3. Parameter 1
Common Input Parameters	Type	Description	Example
	<Boolean>	boolean logic	0,1
	<NR1>	integers	0, 1, 2, 3
	<NR2>	decimal numbers	0.1, 3.14, 8.5

$<$ NR3 $>$	floating point with exponent	$4.5 \mathrm{e}-1,8.25 \mathrm{e}+1$
$<$ NRf $>$	any of NR1, 2,3	$1,1.5,4.5 \mathrm{e}-1$

[MIN] For commands, this will set the setting to the (Optional lowest value. This parameter can be used in parameter) place of any numerical parameter where indicated.

For queries, it will return the lowest possible value allowed for the particular setting.
[MAX] For commands, this will set the setting to the (Optional highest value. This parameter can be used in parameter) place of any numerical parameter where indicated.

For queries, it will return the highest possible value allowed for the particular setting.

DEF For commands, this will set the setting to the default value. This parameter can be used in place of any numerical parameter where indicated.

For queries, it will return the default value allowed for the particular setting.
Automatic The GDM-9060/9061 automatically sets the command
parameter parameter to the next available value.
range
selection

	Example	conf:volt:dc 3	
		This will set the measurement item to DC Voltage and the range to 10 V . There is no 3 V range so the DMM selects the next available range, 10 V .	
Message Terminator (EOL)	Remote Command	Marks the end of a command line. The following messages are in accordance with IEEE488.2 standard.	
		$\begin{aligned} & \mathrm{LF}, \mathrm{CR}, \mathrm{CR}+\mathrm{LF}, \\ & \mathrm{LF}+\mathrm{CR} \end{aligned}$	The most common EOL character is CR+LF
Message Separator	EOL or ; (semicolon)	Command Separator	

Command Set

CALCulate:SCALe:GAIN \{<gain>|MIN|MAX|DEF\}[,(@<ch_list>)] 235
CALCulate:SCALe:GAIN? [\{(@<ch_list>)|MIN|MAX|DEF\}] 235
CALCulate:SCALe:OFFSet \{<offset>|MIN|MAX|DEF\}[,(@<ch_list>)] 235
CALCulate:SCALe:OFFSet? [\{(@<ch_list>)|MIN|MAX|DEF\}] 235
CALCulate:SCALe:OFFSet:NULL [(@<ch_list>)] 236
CALCulate:SCALe:PERCent $\{<$ reference $>|M I N| M A X \mid D E F\}\left[,\left(@<c h _l i s t>\right)\right]$ 236
CALCulate:SCALe:PERCent? [\{(@<ch_list>)|MIN|MAX|DEF\}] 236
CALCulate:SCALe:REFerence
\{<reference>|MIN|MAX|DEF\}[,(@<ch_list>)] 236
CALCulate:SCALe:REFerence? [\{(@<ch_list>)|MIN|MAX|DEF\}] 236
CALCulate:SCALe:REFerence:AUTO \{OFF|ON\}[,(@<ch_list>)] 237
CALCulate:SCALe:REFerence:AUTO? [(@<ch_list>)] 237
CALCulate:SCALe:REFerence:IMMediate [(@<ch_list>)] 237
CALCulate:SCALe[:STATe] \{OFF|ON\}[,(@<ch_list>)] 237
CALCulate:SCALe[:STATe]? [(@<ch_list>)] 237
CALCulate:SCALe:UNIT "<string>"[,(@<ch_list>)] 238
CALCulate:SCALe:UNIT? [(@<ch_list>)] 238
CALCulate:SCALe:UNIT:STATe \{OFF|ON\}[,(@<ch_list>)] 238
CALCulate:SCALe:UNIT:STATe? [(@<ch_list>)] 238
CONFigure? [(@<ch_list>)] 238
CONFigure:CAPacitance
[\{<range>|AUTO|MIN|MAX|DEF\},[\{<resolution>|MIN|MAX|DEF\},]](@%3Cch_list%3E)239
CONFigure:CURRent:\{AC|DC\}
[\{<range>|AUTO|MIN|MAX|DEF\},[\{<resolution>|MIN|MAX|DEF\},]](@%3Cch_list%3E)239
CONFigure:DIODe (@<ch_list>) 239
CONFigure: $\{$ FREQuency|PERiod\}
[\{<range>|AUTO|MIN|MAX|DEF\},[\{<resolution>|MIN|MAX|DEF\},]](@%3Cch_list%3E)240
CONFigure:\{RESistance|FRESistance\}
[\{<range>|AUTO|MIN|MAX|DEF\},[\{<resolution>|MIN|MAX|DEF\},]](@<c
h_list>) 240
CONFigure:STRain:\{DIRect|FDIRect\}
[\{<gage_ohms>|MIN|MAX|DEF\},[\{<gage_factor>|MIN|MAX|DEF\},[\{<range>|MIN|MAX|DEF\},[\{<resolution>|MIN|MAX|DEF\},]]]](@%3Cch_list%3E).241
CONFigure:STRain:\{FULL|HALF\}:BENDing
[\{<gage_factor>|MIN|MAX|DEF\},[\{<range>|MIN|MAX|DEF\},[\{<resolution >|MIN|MAX|DEF\}, $]$]](@%3Cch_list%3E) 241
CONFigure:STRain:\{FULL|HALF\}:POISson[\{<gage_factor>|MIN|MAX|DEF\},[\{<poisson_ratio>|MIN|MAX|DEF\}, $\{\{<$ range>|MIN|MAX|DEF\},[\{<resolution>|MIN|MAX|DEF\}, $]$]]](@%3Cch_list%3E) 241CONFigure:STRain:FULL:BENDing:POISson[\{<gage_factor>|MIN|MAX|DEF\},[\{<poisson_ratio>|MIN|MAX|DEF\},[\{<range>|MIN|MAX|DEF\},[\{<resolution>|MIN|MAX|DEF\},]]]](@%3Cch_list%3E) 242CONFigure:STRain:QUARter\{<gage_factor>|MIN|MAX|DEF\},[\{<range>|MIN|MAX|DEF\},[\{<resolution$>|\mathrm{MIN}| \mathrm{MAX} \mid \mathrm{DEF}\}]],(@<$ ch_list>)242
CONFigure:TEMPerature
<probe_type>,[\{<type>|DEF\},[\{<resolution>|MIN|MAX|DEF\},]](@<ch_list >) 242
CONFigure[:VOLTage]:\{AC|DC\}
[\{<range>|AUTO|MIN|MAX|DEF\},[\{<resolution>|MIN|MAX|DEF\},]](@<c h_list>) 243
DATA:LAST? [<num_rdgs>,](@%3Cch_list%3E) 243
DATA:POINts? 243
DATA:POINts:EVENt:THReshold <num_rdgs> 244
DATA:POINts:EVENt:THReshold? 244
DATA:REMove? <num_rdgs>,[WAIT] 245
DIGital:INTerface:MODE <type> 245
DIGital:INTerface:MODE? 245
DIGital:INTerface:DATA:OUTPut <data>,<strobe_pulse> 246
DIGital:INTerface:DATA:SETup <boolean> 246
DISPlay \{OFF|ON $\}$ 246
DISPlay? 246
DISPlay:TEXT "<message>" 247
DISPlay:TEXT? 247
DISPlay:TEXT:CLEar 247
FORMat:READing:ALARm \{OFF|ON\} 247
FORMat:READing:ALARm? 247
FORMat:READing:CHANnel \{OFF|ON\} 247
FORMat:READing:CHANnel? 247
FORMat:READing:TIME \{OFF|ON\} 248
FORMat:READing:TIME? 248
FORMat:READing:TIME:TYPE \{ABSolute|RELative $\}$ 248
FORMat:READing:TIME:TYPE? 248
FORMat:READing:UNIT \{OFF|ON\} 249
FORMat:READing:UNIT? 249
FORMat:BORDer \{NORMal|SWAPped\} 249
FORMat:BORDer? 249
FORMat[:DATA] \{ASCii|REAL\}[,<length>] 249
FORMat[:DATA]? 249
HCOPy:SDUMp:DATA? 249
MEASure:CAPacitance?
[\{<range>|AUTO|MIN|MAX|DEF\},[\{<resolution>|MIN|MAX|DEF\}, $]]$ 250
(@<ch_list>) 250
MEASure:CURRent:\{AC|DC\}? 250
[\{<range>|AUTO|MIN|MAX|DEF\},[\{<resolution>|MIN|MAX|DEF\},]](@<c h_list>) 250
MEASure:DIODe? (@<ch_list>) 251
MEASure:\{FREQuency|PERiod\}?
[\{<range>|AUTO|MIN|MAX|DEF\},[\{<resolution>|MIN|MAX|DEF\},]](@%3Cch_list%3E)251
MEASure:\{RESistance|FRESistance\}?
[\{<range>|AUTO|MIN|MAX|DEF\},[\{<resolution>|MIN|MAX|DEF\},]](@<c
h_list>) 252
MEASure:STRain:\{DIRect|FDIRect\}?[\{<gage_ohms>|MIN|MAX|DEF\},[\{<<gage_factor>|MIN|MAX|DEF\},[\{<range>|MIN|MAX|DEF\},[\{<resolution>|MIN|MAX|DEF\},]]]](@%3Cch_list%3E).252
MEASure:STRain:\{FULL|HALF\}:BENDing?[\{<gage_factor>|MIN|MAX|DEF\},[\{<range>|MIN|MAX|DEF\},[\{<resolution$>\mid \mathrm{MIN|MAX|DEF} \mathrm{\}]]],(@<ch} \mathrm{\left._list>\right)}$253
MEASure:STRain:\{FULL|HALF\}:POISson?[\{<gage_factor>|MIN|MAX|DEF\},[\{<poisson_ratio>|MIN|MAX|DEF\}, $\{\{<$ range>|MIN|MAX|DEF\},[[<resolution>|MIN|MAX|DEF\},]]]](@%3Cch_list%3E) 253MEASure:STRain:FULL:BENDing:POISson
[\{<gage_factor>|MIN|MAX|DEF\},[\{<poisson_ratio>|MIN|MAX|DEF\},[\{<range>|MIN|MAX|DEF\},[[<<resolution>|MIN|MAX|DEF\},]]]](@%3Cch_list%3E) 254
MEASure:STRain:QUARter
\{<gage_factor>|MIN|MAX|DEF\},,[\{<range>|MIN|MAX|DEF\},[\{<resolution>|MIN|MAX|DEF\},]](@%3Cch_list%3E)254
MEASure:TEMPerature?
<probe_type>,[\{<type>|DEF\},[\{<resolution>|MIN|MAX|DEF\},]](@<ch_list >) 255
MEASure[:VOLTage]:\{AC|DC\}?
[\{<range>|AUTO|MIN|MAX|DEF\},[\{<resolution>|MIN|MAX|DEF\},]](@%3Cch_list%3E)255
MMEMory:FORMat:READing:CHEAder \{NUMber|LABel\} 256
MMEMory:FORMat:READing:CHEAder? 256
MMEMory:FORMat:READing:CSEParator \{COMMa|SEMicolon|TAB\} . 256MMEMory:FORMat:READing:CSEParator?256
MMEMory:FORMat:READing:RLIMit \{OFF|ON\} 256
MMEMory:FORMat:READing:RLIMit? 256
MMEMory:FORMat:READing:RLIMit:COUNt \{<number>|MIN|MAX|DEF\} 257
MMEMory:FORMat:READing:RLIMit:COUNt? [\{MIN|MAX|DEF\}] 257
MMEMory:LOG[:ENABle] \{OFF|ON\} 257
MMEMory:LOG[:ENABle]? 257
OUTPut:ALARm:CLEar:ALL 258
OUTPut:ALARm $\{1|2| 3 \mid 4\}$:CLEar 258
OUTPut:ALARm\{1|2|3|4\}:SOURce (@<ch_list>) 259
OUTPut:ALARm $\{1|2| 3 \mid 4\}:$ SOURce? 259
OUTPut:ALARm:MODE \{LATCh|TRACk\} 259
OUTPut:ALARm:MODE? 259
OUTPut:ALARm:SLOPe \{POSitive|NEGative\} 260
OUTPut:ALARm:SLOPe? 260
OUTPut:TRIGger:SLOPe \{POSitive|NEGative\} 260
OUTPut:TRIGger:SLOPe? 260
ROUTe:CHANnel:ADVance:SOURce \{BUS|IMMediate|EXTernal\} 261
ROUTe:CHANnel:ADVance:SOURce? 261
ROUTe:CHANnel:DELay \{<seconds>IMIN|MAX\}[,(@<ch_list>)] 261
ROUTe:CHANnel:DELay? [\{(@<ch_list>)|MIN|MAX\}]? 261
ROUTe:CHANnel:DELay:AUTO \{OFF|ON\}[,(@<ch_list>)] 261
ROUTe:CHANnel:DELay:AUTO? [(@<ch_list>)] 261
ROUTe:CHANnel:FWIRe \{OFF|ON\}[,(@<ch_list>)] 262
ROUTe:CHANnel:FWIRe? [(@<ch_list>)] 262
ROUTe:CHANnel:LABel "<label>",(@<ch_list>) 262
ROUTe:CHANnel:LABel? [\{USER|FACtory\},](@%3Cch_list%3E) 262
ROUTe:CHANnel:LABel:CLEar:MODule $\{<$ slot>|ALL\} 263
ROUTe:CLOSe (@<ch_list>) 263
ROUTe:CLOSe? (@<ch_list>) 263
ROUTe:CLOSe:EXCLusive (@<ch_list>) 264
ROUTe:DONE? 264
ROUTe:MONitor (@<channel>) 264
ROUTe:MONitor? 264
ROUTe:MONitor:DATA? 265
ROUTe:MONitor:DATA:FULL? 265
ROUTe:MONitor:STATe \{OFF|ON \} 266
ROUTe:MONitor:STATe? 266
ROUTe:MONitor:VIEW \{NUMeric|TCHart|HISTogram|METer\} 266
ROUTe:MONitor:VIEW? 266
ROUTe:OPEN (@<ch_list>) 266
ROUTe:OPEN? (@<ch_list>) 266
ROUTe:SCAN (@<ch_list>) 267
ROUTe:SCAN? 267
ROUTe:SCAN:SIZE? 267
[SENSe:]FUNCtion[:ON] "<function>"[,(@<ch_list>)] 268
[SENSe:]FUNCtion[:ON]? [(@<ch_list>)] 268
[SENSe:]AVERage:COUNt \{<count>|MIN|MAX\}[,(@<ch_list>)] 268
[SENSe:]AVERage:COUNt? [\{(@<ch_list>)|MIN|MAX\}] 268
[SENSe:]AVERage:STATe \{OFF|ON\}[,(@<ch_list>)] 268
[SENSe:]AVERage:STATe? [(@<ch_list>)] 268
[SENSe:]AVERage:WINDow \{<percent>|MIN|MAX\}[,(@<ch_list>)] 269
[SENSe:]AVERage:WINDow? [\{(@<ch_list>)|MIN|MAX\}] 269
[SENSe:]AVERage:WINDow:METHod <type>[,(@<ch_list>)]. 269
[SENSe:]AVERage:WINDow:METHod? [(@<ch_list>)] 269
[SENSe:]CAPacitance:RANGe \{<range>|MIN|MAX|DEF\}[,(@<ch_list>)] 270
[SENSe:]CAPacitance:RANGe? [\{(@<ch_list>)|MIN|MAX|DEF\}] 270
[SENSe:]CAPacitance:RANGe:AUTO \{OFF|ON\}[,(@<ch_list>)] 270
[SENSe:]CAPacitance:RANGe:AUTO? [(@<ch_list>)] 270
[SENSe:]CURRent:AC:BANDwidth
\{<freq>|MIN|MAX|DEF\}[,(@<ch_list>)] 271
[SENSe:]CURRent:AC:BANDwidth? [\{(@<ch_list>)|MIN|MAX|DEF\}]. 271
[SENSe:]CURRent:\{AC|DC\}:RANGe\{<range>|MIN|MAX|DEF\}[,(@<ch_list>)]271
[SENSe:]CURRent:\{AC|DC\}:RANGe? [\{(@<ch_list>)|MIN|MAX|DEF\}]. 271
[SENSe:]CURRent:\{AC|DC\}:RANGe:AUTO \{OFF|ON\}[,(@<ch_list>)]. 272[SENSe:]CURRent:\{AC|DC\}:RANGe:AUTO? [(@<ch_list>)]272
[SENSe:]CURRent:\{AC|DC\}:RANGe:LOW \{<range>|MIN|MAX|DEF\}[,(@<ch_list>)] 272
[SENSe:]CURRent:\{AC|DC\}:RANGe:LOW?
[\{(@<ch_list>)|MIN|MAX|DEF\}] 272
[SENSe:]CURRent[:DC]:APERture\{<seconds>|MIN|MAX|DEF\}[,(@<ch_list>)]273
[SENSe:]CURRent[:DC]:APERture? [\{(@<ch_list>)|MIN|MAX|DEF\}]. 273
[SENSe:]CURRent[:DC]:APERture:ENABle \{OFF|ON\}[,(@<ch_list>)]... 27
[SENSe:]CURRent[:DC]:APERture:ENABle? [\{(@<ch_list>)] 273
[SENSe:]CURRent[:DC]:NPLCycles \{<PLCs>|MIN|MAX|DEF\}[,(@<ch_list>)] 273
[SENSe:]CURRent[:DC]:NPLCycles? [\{(@<ch_list>)|MIN|MAX|DEF\}] 273
[SENSe:]CURRent[:DC]:ZERO:AUTO \{OFF|ON\}[,(@<ch_list>)] 274
[SENSe:]CURRent[:DC]:ZERO:AUTO? [(@<ch_list>)] 274
[SENSe:]DIODe:ZERO:AUTO \{OFF|ON\}[,(@<ch_list>)] 274
[SENSe:]DIODe:ZERO:AUTO? [(@<ch_list>)] 274
[SENSe:]\{FREQuency|PERiod\}:APERture \{<seconds>|MIN|MAX|DEF\}[,(@<ch_list>)] 274
[SENSe:]\{FREQuency|PERiod\}:APERture?
[\{(@<ch_list>)|MIN|MAX|DEF\}] 274
[SENSe:]\{FREQuency|PERiod\}:RANGe:LOWer \{<freq>|MIN|MAX|DEF\}[,(@<ch_list>) 275
[SENSe:]\{FREQuency|PERiod\}:RANGe:LOWer?
[\{(@<ch_list>)|MIN|MAX|DEF\}] 275
[SENSe:]\{FREQuency|PERiod\}:TIMeout:AUTO \{OFF|ON\}[,(@<ch_list>)] 275
[SENSe:]\{FREQuency|PERiod\}:TIMeout:AUTO? [(@<ch_list>)] 275
[SENSe:]\{FREQuency|PERiod\}:VOLTage:RANGe \{<range>|MIN|MAX|DEF\}[,(@<ch_list>)] 275
[SENSe:]\{FREQuency|PERiod\}:VOLTage:RANGe?
[\{(@<ch_list>)|MIN|MAX|DEF\}] 275
[SENSe:]\{FREQuency|PERiod\}:VOLTage:RANGe:AUTO \{OFF|ON\}[,(@<ch_list>)] 276
[SENSe:]\{FREQuency|PERiod\}:VOLTage:RANGe:AUTO? [(@<ch_list>)]276
[SENSe:]\{RESistance|FRESistance\}:APERture
\{<seconds>|MIN|MAX|DEF\}[,(@<ch_list>)] 276
[SENSe:]\{RESistance|FRESistance\}:APERture? [(@<ch_list>)|MIN|MAX|DEF\}] 276
[SENSe:]\{RESistance|FRESistance\}:APERture:ENABle \{OFF|ON\}[,(@<ch_list>)] 277
[SENSe:]\{RESistance|FRESistance\}:APERture:ENABle? [(@<ch_list>)] 277
[SENSe:]\{RESistance|FRESistance\}:NPLCycles \{<PLCs>|MIN|MAX|DEF\}[,(@<ch_list>)] 277
[SENSe:]\{RESistance|FRESistance\}:NPLCycles? [\{(@<ch_list>)|MIN|MAX|DEF\}] 277
[SENSe:]\{RESistance|FRESistance\}:OCOMpensated \{OFF|ON\}[,(@<ch_list>)] 278
[SENSe:]\{RESistance|FRESistance\}:OCOMpensated? [(@<ch_list>)] 278
[SENSe:]\{RESistance|FRESistance\}:POWer:LIMit[:STATe] \{OFF|ON\}[,(@<ch_list>)] 278
[SENSe:]\{RESistance|FRESistance\}:POWer:LIMit[:STATe]? [(@<ch_list>)]278
[SENSe:]\{RESistance|FRESistance\}:RANGe \{<range>|MIN|MAX|DEF\}[,(@<ch_list>)] 279
[SENSe:]\{RESistance|FRESistance\}:RANGe? [\{(@<ch_list>)|MIN|MAX|DEF\}] 279
[SENSe:]\{RESistance|FRESistance\}:RANGe:AUTO \{OFF|ON\}[,(@<ch_list>)] 279
[SENSe:]\{RESistance|FRESistance\}:RANGe:AUTO? [(@<ch_list>)] 279
[SENSe:]\{RESistance|FRESistance\}:ZERO:AUTO \{OFF|ON\}[,(@<ch_list>)] 280
[SENSe:]\{RESistance|FRESistance\}:ZERO:AUTO? [(@<ch_list>)] 280
[SENSe:]STRain:APERture $\{<$ seconds>|MIN|MAX|DEF\}[,(@<ch_list>)] 280
[SENSe:]STRain:APERture? [\{(@<ch_list>)|MIN|MAX|DEF\}] 280
[SENSe:]STRain:APERture:ENABle \{OFF|ON\}[,(@<ch_list>)] 280
[SENSe:]STRain:APERture:ENABle? [(@<ch_list>)] 280
[SENSe:]STRain:EXCitation $\quad\{<$ voltage>|MIN|MAX|DEF\}[,(@<ch_list>)] 281
[SENSe:]STRain:EXCitation? [\{(@<ch_list>)|MIN|MAX|DEF\}] 281
[SENSe:]STRain:EXCitation:TYPE \{EXTernal|FIXed\}[,(@<ch_list>)] 281
[SENSe:]STRain:EXCitation:TYPE? [(@<ch_list>)] 281
[SENSe:]STRain:GFACtor \{<gage_factor>|MIN|MAX|DEF\}[,(@<ch_list>)]
[SENSe:]STRain:GFACtor? [\{(@<ch_list>)|MIN|MAX|DEF\}] 282
[SENSe:]STRain:NPLCycles \{<PLCs>|MIN|MAX|DEF\}[,(@<ch_list>)].. 28
[SENSe:]STRain:NPLCycles? [\{(@<ch_list>)|MIN|MAX|DEF\}] 282
[SENSe:]STRain:OCOMpensated \{OFF|ON\}[,(@<ch_list>)]. 283
[SENSe:]STRain:OCOMpensated? [(@<ch_list>)] 283
[SENSe:]STRain:POISson \{<poisson_ratio>|MIN|MAX|DEF\}[,(@<ch_list>)] 283
[SENSe:]STRainPOISson? [\{(@<ch_list>)|MIN|MAX|DEF\}] 283
[SENSe:]STRain:RESistance
\{<gage_ohm>|MIN|MAX|DEF\}[,(@<ch_list>)] 283
[SENSe:]STRain:RESistance? [\{(@<ch_list>)|MIN|MAX|DEF\}] 283
[SENSe:]STRain:UNSTrained \{<offset>|MIN|MAX|DEF\}[,(@<ch_list>)]284
[SENSe:]STRain:UNSTrained? [\{(@<ch_list>)|MIN|MAX|DEF\}] 284
[SENSe:]STRain:UNSTrained:IMMediate [(@<ch_list>)] 284
[SENSe:]STRain:VOLTage:RANGe \{<range>|MIN|MAX|DEF\}[,(@<ch_list>)] 284
[SENSe:]STRain:VOLTage:RANGe? [\{(@<ch_list>)|MIN|MAX|DEF\}]. 284
[SENSe:]STRain:VOLTage:RANGe:AUTO \{OFF|ON\}[,(@<ch_list>)] 285
[SENSe:]STRain:VOLTage:RANGe:AUTO? [(@<ch_list>)] 285
[SENSe:]STRain:ZERO:AUTO \{OFF|ON\}[,(@<ch_list>)] 285
[SENSe:]STRain:ZERO:AUTO? [(@<ch_list>)] 285
[SENSe:]TEMPerature:APERture \{<seconds>|MIN|MAX|DEF\}[,(@<ch_list>)] 285
[SENSe:]TEMPerature:APERture? [\{(@<ch_list>)|MIN|MAX|DEF\}]. 285
[SENSe:]TEMPerature:APERture:ENABle \{OFF|ON\}[,(@<ch_list>)] 286
[SENSe:]TEMPerature:APERture:ENABle? [(@<ch_list>)] 286
[SENSe:]TEMPerature:NPLCycles
\{<PLCs>|MIN|MAX|DEF\}[,(@<ch_list>)] 286
[SENSe:]TEMPerature:NPLCycles? [\{(@<ch_list>)|MIN|MAX|DEF\}] 286
[SENSe:]TEMPerature:RJUNction? [(@<ch_list>)] 286
[SENSe:]TEMPerature:RJUNction:SIMulated:AUTO:OFFSet \{<temperature>|MIN|MAX|DEF\}[,(@<ch_list>)] 287
[SENSe:]TEMPerature:RJUNction:SIMulated:AUTO:OFFSet? [\{(@<ch_list>)|MIN|MAX|DEF\}] 287
[SENSe:]TEMPerature:TRANsducer:\{RTD|FRTD\}:TYPE <sensor_type>[,(@<ch_list>)] 287
[SENSe:]TEMPerature:TRANsducer:\{RTD|FRTD\}:TYPE? [(@<ch_list>)]287
[SENSe:]TEMPerature:TRANsducer:\{RTD|FRTD\}:USER:ALPHa \{<coefficient>|MIN|MAX|DEF\}[,(@<ch_list>)] 287
[SENSe:]TEMPerature:TRANsducer:\{RTD|FRTD\}:USER:ALPHa? [\{(@<ch_list>)|MIN|MAX|DEF\}] 287
[SENSe:]TEMPerature:TRANsducer:\{RTD|FRTD\}:USER:BETA \{<coefficient>|MIN|MAX|DEF\}[,(@<ch_list>)] 288
[SENSe:]TEMPerature:TRANsducer:\{RTD|FRTD\}:USER:BETA? [\{(@<ch_list>)|MIN|MAX|DEF\}] 288
[SENSe:]TEMPerature:TRANsducer:\{RTD|FRTD\}:USER:DELTa \{<coefficient>|MIN|MAX|DEF\}[,(@<ch_list>)] 288
[SENSe:]TEMPerature:TRANsducer:\{RTD|FRTD\}:USER:DELTa? [\{(@<ch_list>)|MIN|MAX|DEF\}] 288
[SENSe:]TEMPerature:TRANsducer:\{RTD|FRTD\}:OCOMpensated \{OFF|ON\}[,(@<ch_list>)] 288
[SENSe:]TEMPerature:TRANsducer:\{RTD|FRTD\}:OCOMpensated? [(@<ch_list>)] 288
[SENSe:]TEMPerature:TRANsducer:\{RTD|FRTD\}:POWer:LIMit[:STATe] \{OFF|ON\}[,(@<ch_list>)] 289
[SENSe:]TEMPerature:TRANsducer:\{RTD|FRTD\}:POWer:LIMit[:STATe]? [(@<ch_list>)] 289
[SENSe:]TEMPerature:TRANsducer:\{RTD|FRTD\}:REFerence \{OFF|ON\}[,(@<ch_list>)] 289
[SENSe:]TEMPerature:TRANsducer:\{RTD|FRTD\}:REFerence? [(@<ch_list>)] 289
[SENSe:]TEMPerature:TRANsducer:\{RTD|FRTD\}:RESistance[:REFerence] \{<resistance>|MIN|MAX|DEF\}[,(@<ch_list>)] 290
[SENSe:]TEMPerature:TRANsducer:\{RTD|FRTD\}:RESistance[:REFerence]? [\{(@<ch_list>)|MIN|MAX|DEF\}] 290
[SENSe:]TEMPerature:TRANsducer:\{THERmistor|FTHermistor\}:POWer:LI Mit[:STATe] \{OFF|ON\}[,(@<ch_list>)] 290
[SENSe:]TEMPerature:TRANsducer:\{THERmistor|FTHermistor\}:POWer:LI Mit[:STATe]? [(@<ch_list>)] 290
[SENSe:]TEMPerature:TRANsducer:\{THERmistor|FTHermistor\}:REFerenc e \{OFF|ON\}[,(@<ch_list>)] 291
[SENSe:]TEMPerature:TRANsducer:\{THERmistor|FTHermistor\}:REFerenc e? [(@<ch_list>)] 291[SENSe:]TEMPerature:TRANsducer:\{THERmistor|FTHermistor\}:TYPE\{<sensor_type>|MIN|MAX|DEF\}[,(@<ch_list>)]291
[SENSe:]TEMPerature:TRANsducer:\{THERmistor|FTHermistor\}:TYPE? [\{(@<ch_list>)|MIN|MAX|DEF\}] 291
[SENSe:]TEMPerature:TRANsducer:\{THERmistor|FTHermistor\}:USER:AVALue \{<coefficient>|MIN|MAX|DEF\}[,(@<ch_list>)]291
[SENSe:]TEMPerature:TRANsducer:\{THERmistor|FTHermistor\}:USER:AV ALue? [\{(@<ch_list>)|MIN|MAX|DEF\}] 291
[SENSe:]TEMPerature:TRANsducer:\{THERmistor|FTHermistor\}:USER:BV ALue $\{<$ coefficient>|MIN|MAX|DEF\}[,(@<ch_list>)] 292
[SENSe:]TEMPerature:TRANsducer:\{THERmistor|FTHermistor\}:USER:BV ALue? [\{(@<ch_list>)|MIN|MAX|DEF\}] 292
[SENSe:]TEMPerature:TRANsducer:\{THERmistor|FTHermistor\}:USER:CV ALue $\{<$ coefficient>|MIN|MAX|DEF\}[,(@<ch_list>)] 292
[SENSe:]TEMPerature:TRANsducer:\{THERmistor|FTHermistor\}:USER:CV ALue? [\{(@<ch_list>)|MIN|MAX|DEF\}] 292
[SENSe:]TEMPerature:TRANsducer:TCouple:CHECk \{OFF|ON\}[,(@<ch_list>)] 292
[SENSe:]TEMPerature:TRANsducer:TCouple:CHECk? [(@<ch_list>)] 292
[SENSe:]TEMPerature:TRANsducer:TCouple:RJUNction \{<temperature>|MIN|MAX|DEF\}[,(@<ch_list>)] 293
[SENSe:]TEMPerature:TRANsducer:TCouple:RJUNction? [\{(@<ch_list>)|MIN|MAX|DEF\}] 293
[SENSe:]TEMPerature:TRANsducer:TCouple:RJUNction:TYPE <reference>[,(@<ch_list>)] 293
[SENSe:]TEMPerature:TRANsducer:TCouple:RJUNction:TYPE? [(@<ch_list>)] 293
[SENSe:]TEMPerature:TRANsducer:TCouple:TYPE <sensor_type>[,(@<ch_list>)] 293
[SENSe:]TEMPerature:TRANsducer:TCouple:TYPE? [(@<ch_list>)] 293
[SENSe:]TEMPerature:TRANsducer:TYPE <probe_type>[,(@<ch_list>)]294
[SENSe:]TEMPerature:TRANsducer:TYPE? [(@<ch_list>)] 294
[SENSe:]TEMPerature:ZERO:AUTO \{OFF|ON\}[,(@<ch_list>)] 294
[SENSe:]TEMPerature:ZERO:AUTO? [(@<ch_list>)] 294
[SENSe:]VOLTage:AC:BANDwidth \{<freq>|MIN|MAX|DEF\}[,(@<ch_list>)]294
[SENSe:]VOLTage:AC:BANDwidth? [\{(@<ch_list>)|MIN|MAX|DEF\}] 294
[SENSe:]VOLTage:\{AC|DC\}:RANGe
\{<range>|MIN|MAX|DEF\}[,(@<ch_list>)] 295
[SENSe:]VOLTage:\{AC|DC\}:RANGe? [\{(@<ch_list>)|MIN|MAX|DEF\}] 295
[SENSe:]VOLTage:\{AC|DC\}:RANGe:AUTO \{OFF|ON\}[,(@<ch_list>)] 295
[SENSe:]VOLTage:\{AC|DC\}:RANGe:AUTO? [(@<ch_list>)] 295
[SENSe:]VOLTage[:DC]:APERture
\{<seconds>|MIN|MAX|DEF\}[,(@<ch_list>)] 295
[SENSe:]VOLTage[:DC]:APERture? [\{(@<ch_list>)|MIN|MAX|DEF\}] 295
[SENSe:]VOLTage[:DC]:APERture:ENABle \{OFF|ON\}[,(@<ch_list>)]. 296
[SENSe:]VOLTage[:DC]:APERture:ENABle? [(@<ch_list>)] 296
[SENSe:]VOLTage[:DC]:IMPedance:AUTO \{OFF|ON\}[,(@<ch_list>)]. 296
[SENSe:]VOLTage[:DC]:IMPedance:AUTO? [(@<ch_list>)] 296
[SENSe:]VOLTage[:DC]:NPLCycles
\{<PLCs>|MIN|MAX|DEF\}[,(@<ch_list>)] 297
[SENSe:]VOLTage[:DC]:NPLCycles? [\{(@<ch_list>)|MIN|MAX|DEF\}] 297
[SENSe:]VOLTage[:DC]:REFerence \{OFF|ON\}[,(@<ch_list>)]. 297
[SENSe:]VOLTage[:DC]:REFerence? [(@<ch_list>)] 297
[SENSe:]VOLTage[:DC]:ZERO:AUTO \{OFF|ON\}[,(@<ch_list>)] 297
[SENSe:]VOLTage[:DC]:ZERO:AUTO? [(@<ch_list>)] 297
STATus:ALARm:CONDition? 298
STATus:ALARm:ENABle <enable> 298
STATus:ALARm:ENABle? 298
STATus:ALARm[:EVENt]? 299
STATus:OPERation:CONDition? 299
STATus:OPERation:ENABle <enable> 299
STATus:OPERation:ENABle? 299
STATus:OPERation[:EVENt]? 300
STATus:PRESet 300
STATus:QUEStionable:CONDition? 300
STATus:QUEStionable:ENABle <enable> 301
STATus:QUEStionable:ENABle? 301
STATus:QUEStionable[:EVENt]? 301
SYSTem:ACALibration? \{<slot>|DMM|ALL\} 302
SYSTem:ACALibration:DATE? \{<slot>|DMM\} 302
SYSTem:ACALibration:INTerval \{OFF|DAILy|WEEKly|MONThly\} 302
SYSTem:ACALibration:INTerval? 302
SYSTem:ACALibration:INTerval:MDAY <dayofMonth> 303
SYSTem:ACALibration:INTerval:MDAY? 303
SYSTem:ACALibration:INTerval:TIME <hour>,<minute> 303
SYSTem:ACALibration:INTerval:TIME? 303
SYSTem:ACALibration:INTerval:WDAY <dayofWeek> 303
SYSTem:ACALibration:INTerval:WDAY? 303
SYSTem:ACALibration:TEMPerature? \{<slot>|DMM\} 304
SYSTem:ACALibration:TIME? \{<slot>|DMM\} 304
SYSTem:ALARm? 305
SYSTem:BEEPer[:IMMediate] 305
SYSTem:BEEPer:ERRor \{OFF|ON \} 305
SYSTem:BEEPer:ERRor? 305
SYSTem:BEEPer:STATe \{OFF|ON $\}$ 306
SYSTem:BEEPer:STATe? 306
SYSTem:CLICk:STATe \{OFF|ON\} 306
SYSTem:CLICk:STATe? 306
SYSTem:CPON \{<slot>|ALL\} 306
SYSTem:CTYPe? <slot> 306
SYSTem:DATE <year>,<month>,<day> 307
SYSTem:DATE? 307
SYSTem:ERRor? 307
SYSTem:LFRequency? 307
SYSTem:LOCal 307
SYSTem:REMote 307
SYSTem:PARameter:LOAD <mem_num> 307
SYSTem:PARameter:LOAD? 307
SYSTem:PARameter:SAVE <mem_num> 307
SYSTem:PERSona[:MANufacturer] "<string>" 308
SYSTem:PERSona[:MANufacturer]? 308
SYSTem:PERSona[:MANufacturer]:DEFault 308
SYSTem:PERSona[:MANufacturer]:DEFault? 308
SYSTem:PERSona:MODel "<string>" 308
SYSTem:PERSona:MODel? 308
SYSTem:PERSona:MODel:DEFault 308
SYSTem:PERSona:MODel:DEFault? 308
SYSTem:PRESet 309
SYSTem:RELay:CYCLes? (@<ch_list>) 309
SYSTem:RELay:CYCLes:CLEar (@<ch_list>) 309
SYSTem:RELay:CYCLes:FACTory? (@<ch_list>) 309
SYSTem:SCPi:MODE \{NORmal|COMPatible\} 309
SYSTem:SCPi:MODE? 309
SYSTem:SCPi:AUTO:SAVE \{OFF|ON\} 310
SYSTem:SCPi:AUTO:SAVE? 310
SYSTem:SERial? 310
SYSTem:SLOT:LABel <slot>,"<string>" 310
SYSTem:SLOT:LABel? <slot> 310
SYSTem:TEMPerature? 310
SYSTem:TIME <hour>,<minute>,<second> 311
SYSTem:TIME? 311
SYSTem:TIME:SCAN? 311
SYSTem:UPTime? 311
SYSTem:VERSion? 311
SYSTem:WMESsage "<string>" 312
SYSTem:WMESsage? 312
SYSTem:COMMunicate:GPIB:ADDRess <address> 313
SYSTem:COMMunicate:GPIB:ADDRess? 313
SYSTem:COMMunicate:LAN:DHCP \{OFF|ON \} 313
SYSTem:COMMunicate:LAN:DHCP? 313
SYSTem:COMMunicate:LAN:DNS[X] "<address>" 313
SYSTem:COMMunicate:LAN:DNS[X]? \{CURRent|STATic \} 313
SYSTem:COMMunicate:LAN:DOMain? 314
SYSTem:COMMunicate:LAN:GATeway "<address>" 314
SYSTem:COMMunicate:LAN:GATeway? \{CURRent|STATic\} 314
SYSTem:COMMunicate:LAN:HOSTname "<string>" 314
SYSTem:COMMunicate:LAN:HOSTname? \{CURRent|STATic\} 314
SYSTem:COMMunicate:LAN:IPADdress "<address>" 315
SYSTem:COMMunicate:LAN:IPADdress? \{CURRent|STATic\} 315
SYSTem:COMMunicate:LAN:MAC? 315
SYSTem:COMMunicate:LAN:SMASk "<address>" 315
SYSTem:COMMunicate:LAN:SMASk? \{CURRent|STATic\} 315
SYSTem:COMMunicate:LAN:TCP:ENABle \{OFF|ON\} 316
SYSTem:COMMunicate:LAN:TCP:ENABle? 316
SYSTem:COMMunicate:LAN:TCP:PORT \{<port>|MIN|MAX|DEF\} 316
SYSTem:COMMunicate:LAN:TCP:PORT? [\{MIN|MAX|DEF\}] 316
SYSTem:COMMunicate:LAN:TELNet:ECHO \{OFF|ON\} 316
SYSTem:COMMunicate:LAN:TELNet:ECHO? 316
SYSTem:COMMunicate:LAN:TELNet:ENABle \{OFF|ON\} 316
SYSTem:COMMunicate:LAN:TELNet:ENABle? 316
SYSTem:COMMunicate:LAN:TELNet:TIMeout <time> 317
SYSTem:COMMunicate:LAN:TELNet:TIMeout? 317
SYSTem:COMMunicate:LAN:TELNet:PORT \{<port>|MIN|MAX|DEF\} 317
SYSTem:COMMunicate:LAN:TELNet:PORT? [\{MIN|MAX|DEF\}] 317
SYSTem:COMMunicate:LAN:TELNet:PROMpt "<string>" 317
SYSTem:COMMunicate:LAN:TELNet:PROMpt? 317
SYSTem:COMMunicate:LAN:TELNet:WMESsage "<string>" 318
SYSTem:COMMunicate:LAN:TELNet:WMESsage? 318
SYSTem:COMMunicate:LAN:TIMeout <time> 318
SYSTem:COMMunicate:LAN:TIMeout? 318
SYSTem:COMMunicate:LAN:UPDate 318
SYSTem:COMMunicate:LAN:WEB:ENABle \{OFF|ON\} 318
SYSTem:COMMunicate:LAN:WEB:ENABle? 318
SYSTem:COMMunicate:LAN:WINS "<address>" 319
SYSTem:COMMunicate:LAN:WINS? \{CURRent|STATic\} 319
TRIGger:COUNt \{<count>|MIN|MAX|DEF|INFinity\} 320
TRIGger:COUN? [\{MIN|MAX|DEF\}] 320
TRIGger:SLOPe \{POSitive | NEGative\} 320
TRIGger:SLOPe? 320
TRIGger:SOURce <source> 321
TRIGger:SOURce? 321
TRIGger:TIMer \{<seconds>|MIN|MAX|DEF\} 322
TRIGger:TIMer? [\{MIN|MAX|DEF\}] 322
*CLS 323
*ESE <enable> 323
*ESE? 323
*ESR? 323
*IDN? 323
*OPC 324
*OPC? 324
*PSC \{0|1\} 324
*PSC? 324
*RCL <mem_num> 324
*RST 325
*SAV <mem_num> 325
*SRE <enable> 325
*SRE? 325
*STB? 325

Other Commands

ABORt

Aborts a measurement in progress form a scan, returning the instrument to the trigger idle state.

- If a scan is in progress when the command is received, the scan will not be completed and you cannot resume the scan from where it left off. Note that if you initiate a new scan, all readings are cleared from reading memory.

FETCh?
Waits for measurements to complete and copies all available measurements to the instrument's output buffer. The readings remain in reading memory will not be erased when read with this command.

Example:
CONF:VOLT:DC 1,(@103, 105, 109)
TRIG:SOUR EXT
INIT
FETC?
Returns: +4.98748741E-01,+4.35163427E-01,+4.33118686E-01
-The FETCh? query does not erase measurements from the reading memory. You can send the query multiple times to retrieve the same data.

- You can save up to 100,000 readings in reading memory and all readings are automatically time stamped. If reading memory overflows, the new readings will overwrite the first (oldest) readings saved; the most recent readings are always preserved. No error is generated, but the Reading Memory Overflow bit (bit 12) is set in the Questionable Data Register's condition register.
- Each time you start a new scan, the instrument clears all readings (including alarm data) saved in reading memory from the previous measurement. Therefore, the contents of reading memory are always from the most recent scan.

INITiate[:IMMediate]

Changes the state of the triggering system from "idle" to "wait-for-trigger", and clears the previous set of measurements from reading memory.
Measurements will begin when the specified trigger conditions are satisfied following the receipt of INIT command.

Example:

CONF:VOLT:DC 10,(@101, 107)
TRIG:SOUR BUS
INIT
*TRG
FETC?
Returns: $+4.98748741 \mathrm{E}-01,+4.35163427 \mathrm{E}-01$

- Storing measurements in reading memory with INITiate is faster than sending measurements to the instrument's output buffer using READ? (provided you do not send FETCh? until done).
-The INITiate command is also an "overlapped" command. This means that after executing INITiate, you can send other commands that do not affect the measurements.
-To retrieve the measurements from the reading memory, use FETCh?. Use DATA:REMove? or R? to read and erase all or part of the available measurements.
- Once you initiate a scan, an error will be generated if you attempt to change any measurement parameters (CONFigure and SENSe commands) or the triggering configuration (TRIGger commands).
- Use ABORt command to return to idle.

INSTrument:DMM \{OFF|ON\}
INSTrument:DMM?
Enables (On) or disables (Off) the internal DMM.
Parameter: 0|1|OFF|ON
Return Parameter: $0 \mid 1,(0=O F F, 1=O N)$
Example:
INST:DMM ON
-When you change the state of the internal DMM, the instrument issues a Factory Reset (*RST command).

R? [<reading_number>]
Reads and erases measurements from reading memory up to the specified <reading_number>.
The measurements are read and erased from the reading memory starting with the oldest measurement first.

Parameter: <reading_number> (1~100,000)

Example:

R? 4
Returns:
\#263-1.12816521E-04,-1.13148354E-04,-1.13485152E-04,-1.13365632E-04
The "\#2" means that the next 2 digits indicate how many characters are in the returned memory string.
In the above example, the 2 digits are the " 63 " after the "\#2". Therefore, the remaining of the string is 63 digits long.

- If you do not specify a value for <reading_numbe>, all measurements are read and erased.

Example:
R ?
Returns: \#231-1.12816521E-04,-1.13148354E-04
-The R? and DATA:REMove? queries can be used during a long series of readings to periodically remove readings from memory that would normally cause the reading memory to overflow. R ? does not wait for all readings to complete. It sends the readings that are complete at the time the instrument receives the command.

- Use Read? or Fetch? if you want the instrument to wait until all readings are complete before sending readings.
- No error is generated if the reading memory contains less readings than requested. In this case, all available readings in memory are read and deleted.

READ?
Changes the state of the triggering system from "idle" to "wait-for-trigger". Scanning will begin when the specified trigger conditions are satisfied following the receipt of the READ? command. Readings are then sent to reading memory and the instrument's output buffer.

Example:
CONF:VOLT:DC 10,(@101,102)
TRIG:SOUR EXT
READ?
Returns: -1.13148354E-04,+3.15167734E-04
-The Read query will not return the unit or count number of the reading.

- Sending READ? is similar to sending INITiate followed immediately by FETCh?

TEST:ALL?

Runs an instrument complete self-test and returns a pass or fail indication. It will take few seconds to complete. If all tests pass, you can have high confidence that the instrument is operational. If fail, errors will save in error queue.

Return parameter: $0 \mid 1 ;(0=$ pass, $1=$ one or more tests failed $)$
-This command is more comprehensive than *TST? self test.

CAUTION

You must remove the sources from the instrument's input terminals before running the full self-test.

TIME:SYNC:SERVer "<server>"
TIME:SYNC:SERVer?
Sets or returns the server source for time sync.
Parameter: "<server>", max length = 24 characters
Return parameter: "<server>"
Example:
TIME:SYNC:SERV "time-nv.nist.gov"

UNIT:TEMPerature <unit>[,(@<ch_list>)]
UNIT:TEMPerature? [(@<ch_list>)]
Specifies the units ${ }^{\circ} \mathrm{C}$ (Celsius), ${ }^{\circ} \mathrm{F}$ (Fahrenheit), or K (Kelvin) to be used for all temperature measurements.

Parameter: <unit> (C|F|K)
Return parameter: C|F|K
Example:
CONF:TEMP TC,K,(@101,102)
UNIT:TEMP C,(@101,102)

- If the corresponding channels are not configured for temperature measurements prior to sending of this command, instrument will dispatch an error message.
-The CONFigure and MEASure? commands automatically select ${ }^{\circ} \mathrm{C}$.

CALCulate Commands

CALCulate:AVERage:ALL? [(@<ch_list>)]
Returns all of the statistic calculation values.
Return parameter: <NRf> (average, standard deviation, minimum, maximum, count)

Example:
CALC:AVER:ALL? (@101)
Returns:
$-2.96976783 \mathrm{E}-03,+1.09347159 \mathrm{E}-04,-3.09208611 \mathrm{E}-03,-2.78148893 \mathrm{E}-03,+1.000$ 00000E+01

CALCulate:AVERage:\{AVERage|MAXimum|MINimum|PTPeak|SDEVia tion\}? [(@<ch_list>)]

Returns the average, maximum, minimum, peak-to-peak or standard deviation recorded values.

Return parameter: <NRf>
Example:
CALC:AVER:MAX? (@101,102,108)
Returns: +4.13148354E+00,+4.15167734E+00,+4.85178821E+00

- In this example, you can replace the MAX node with AVER, MIN, PTP or SDEV.
- If you omit the <ch_list> parameter, it returns the values for all channels in the currently defined scan list

CALCulate:AVERage:CLEar [(@<ch_list>)]
Clears all of the statistic calculation values for the selected channels. The average, count, maximum, minimum, peak-to-peak and standard deviation values are cleared.

Parameter: [None]
Example:
CALC:AVER:CLE (@203:205)
CALCulate:AVERage:COUNt? [(@<ch_list>)]
Returns the total number of recorded counts on each of the selected channels during the scan.

Return parameter: <NRf>
Example:
CALC:AVER:COUN (@201:203)
Returns: $+1.30000000 \mathrm{E}+01,+1.20000000 \mathrm{E}+01,+1.50000000 \mathrm{E}+01$

- If you omit the <ch_list> parameter, it returns the count for all channels in the currently defined scan list.

CALCulate:AVERage:\{MAXimum|MINimum\}:TIME? [(@<ch_list>)] Returns the time that the maximum or minimum reading was taken on the selected channels during the scan (in full time and date format).

Return parameter: <time> (yyyy,mm,dd,hh,mm,ss.sss)
Example:
CALC:AVER:MIN:TIME? (@101,102)
Returns: 2023,03,01,07,26,20.146,2023,03,01,07,26,29.023

- In this example, you can replace the MIN node with MAX.
- For each channel, the query returns the time in the form "yyyy,mm,dd,hh,mm,ss.sss".

CALCulate:LIMit:\{LOWer|UPPer\}
\{<limit>|MIN|MAX|DEF\}[,(@<ch_list>)]
CALCulate:LIMit:\{LOWer|UPPer\}? [\{(@<ch_list>)|MIN|MAX|DEF\}]
The instrument has four alarms which you can configure to alert you when a reading exceeds specified limits during a scan.

Parameter: <limit> (-1.2E+09 ~ +1.2E+09); DEF: -1 (Lower), +1 (Upper)
Return parameter: <NRf
Example:
CALC:LIM:LOW -3,(@101,102)
CALC:LIM:LOW? (@101,102)
Returns: -3.00000000E+00,-3.0000000E+00

- In this example, you can replace the LOW node with UPP.
- The lower limit value must always be less than or equal to the upper limit.

CALCulate:LIMit:\{LOWer|UPPer\}:STATe \{OFF|ON\}[,(@<ch_list>)]
CALCulate:LIMit:\{LOWer|UPPer\}:STATe? [(@<ch_list>)]
Enables or disables the lower and upper alarm limits on the specified channels during a scan.

Parameter: 0|1|OFF|ON
Return parameter: $0 \mid 1$, ($0=$ OFF, $1=O N$)
Example:
CALC:LIM:LOW 2(@101,102)
CALC:LIM:LOW:STAT ON,(@101,102)
CALC:LIM:LOW:STAT? (@101,102)
Returns: 1,1

- In this example, you can replace the LOW node with UPP.

CALCulate:MATH <expression>,(@<computed_ch_list>)
CALCulate:MATH? (@<computed_ch_list>)
A computed channel performs mathematical operation on the readings from measurement channels, or other computed channels list.

Parameter:

Computation type	Mathematical operation	(<expression>)
Basic math	Add	(@ch1+@ch2)
	Subtract	(@ch1-@ch2)
	Multiply	(@ch1*@ch2)
	Divide	(@ch1/@ch2)
	Power	(power(@ch1,2))
	Square root	(sqrt(@ch1))
	Reciprocal	(1/(@ch1))
Polynomial	Fifth order	$\begin{aligned} & \text { (poly(@ch1, <n5>, } \\ & \text { <n4>, <n3>, <n2>, } \\ & \text { <n1>, <n0>)) } \end{aligned}$ where $n=$ value of variable in each order
Statistics	Min	(min(@<ch_list>))
	Max	(max(@<ch_list>))
	Sum	(sum(@<ch_list>))
	Average	(avg(@<ch_list>))
	Standard deviation	(sdev(@<ch_list>))

Return parameter: "<string>"
Example:
CALC:MATH (@201-@202),(@402)
CALC:MATH? (@402)
Returns: " (@201-@202) "
CALC:MATH (sqrt(@201)),(@402)
CALC:MATH? (@402)
Returns: " (sqrt(@201)) "
CALC:MATH (poly(@201,3,2,1,1,1,0)),(@402)
CALC:MATH? (@402)
Returns:
" (poly(@201,+3.00000000E+00,+2.00000000E+00,+1.00000000E+00,+1.000 $00000 \mathrm{E}+00,+1.00000000 \mathrm{E}+00,+0.00000000 \mathrm{E}+00))^{\prime \prime}$

CALC:MATH (max(@201:203)),(@402)
CALC:MATH? (@402)
Returns: " (max(@201,202,203)) "

- Only supported on computed channels (channels 401 through 420).

CALCulate:SCALe:DB:REFerence
\{<reference>|MIN|MAX|DEF\}[,(@<ch_list>)]
CALCulate:SCALe:DB:REFerence? [\{(@<ch_list>)|MIN|MAX|DEF\}] Sets or returns reference value for the dB function.

Parameter: <reference> (-2.0E+02~+2.0E+02); DEF: 0
Return parameter: <NRf>
Example:
CALC:SCAL:DB:REF 100
CALC:SCAL:DB:REF?
Returns: $+1.00000000 \mathrm{E}+02$
CALCulate:SCALe:DBM:REFerence
\{<reference>|MIN|MAX|DEF\}[,(@<ch_list>)]
CALCulate:SCALe:DBM:REFerence? [\{(@<ch_list>)|MIN|MAX|DEF\}]
Sets or returns resistance value for the dBm function.
Parameter: <reference> $(2,4,8,16,50,75,93,110,124,125,135,150,250$, 300, 500, 600, 800, 900, 1000, 1200, 8000); DEF: 600
Return parameter: <NRf>
Example:
CALC:SCAL:DBM:REF DEF
CALC:SCAL:DBM:REF?
Returns: $+6.00000000 \mathrm{E}+02$
CALCulate:SCALe:DECimal:POINt <type>[,(@<ch_list>)]
CALCulate:SCALe:DECimal:POINt? [(@<ch_list>)]
Under the Math function, the display of measured values vary in accordance with either the fixed range setting (Range) or auto range setting (Auto).

Parameter: <type> (AUTO | RANGe)
Return parameter: AUTO | RANG
Example:
CALC:SCAL:DEC:POIN RANG
CALC:SCAL:DEC:POIN?
Returns: RANG

CALCulate:SCALe:FUNCtion <function>[,@<ch_list>]
CALCulate:SCALe:FUNCtion? [@<ch_list>]
Sets or returns the advanced function.
Parameter: <function> (OFF | DB | DBM | SCALe |INV | PCT)
Return parameter: OFF | DB | DBM | SCAL |INV|PCT
Example:
CALC:SCAL:FUNC DB
$\bullet d B$ scaling function is only available when the measurement function on the specified channels sets to DCV orACV.

CALCulate:SCALe:GAIN \{<gain>|MIN|MAX|DEF\}[,(@<ch_list>)]
CALCulate:SCALe:GAIN? [\{(@<ch_list>)|MIN|MAX|DEF\}]
Sets or returns the scale factor M for math measurement.
Parameter: <gain> (-1.2E+09~+1.2E+09); DEF: 1
Return parameter: <NRf
Example:
CALC:SCAL:FUNC SCAL
CALC:SCAL:GAIN 0.5
CALC:SCAL:GAIN?
Returns: $+0.50000000 \mathrm{E}+00$
CALCulate:SCALe:OFFSet \{<offset>|MIN|MAX|DEF\}[,(@<ch_list>)]
CALCulate:SCALe:OFFSet? [\{(@<ch_list>)|MIN|MAX|DEF\}]
Sets or returns the offset factor B for math measurement.
Parameter: <offset> (-1.2E+09~+1.2E+09); DEF: 0
Return parameter: <NRf>
Example:
CALC:SCAL:FUNC SCAL
CALC:SCAL:OFFS 0.01
CALC:SCAL:OFFS?
Returns: +1.0000000E-02

CALCulate:SCALe:OFFSet:NULL [(@<ch_list>)]
Makes an immediate null measurement on the specified channels and stores it as the offset (B) for subsequent measurements.

Parameter: [None]
Example:
CALC:SCAL:FUNC SCAL
CALC:SCAL:OFFS:NULL (@101)
CALCulate:SCALe:PERCent
\{<reference>|MIN|MAX|DEF\}[,(@<ch_list>)]
CALCulate:SCALe:PERCent? [\{(@<ch_list>)|MIN|MAX|DEF\}]
Sets or returns the reference value for the PCT function.
Parameter: <reference> (-1.2E+09~+1.2E+09); DEF: 1
Return parameter: <NRf>
Example:
CALC:SCAL:FUNC PCT
CALC:SCAL:REF 0.1
CALC:SCAL:REF?
Returns: $+1.0000000 \mathrm{E}-01$
CALCulate:SCALe:REFerence
\{<reference>|MIN|MAX|DEF\}[,(@<ch_list>)]
CALCulate:SCALe:REFerence? [\{(@<ch_list>)|MIN|MAX|DEF\}]
Sets or returns the reference value for the PCT function.
Parameter: <reference> (-1.2E+09~+1.2E+09); DEF: 1
Return parameter: <NRf>
Example:
CALC:SCAL:FUNC PCT
CALC:SCAL:REF 0.1
CALC:SCAL:REF?
Returns: +1.0000000E-01

CALCulate:SCALe:REFerence:AUTO \{OFF|ON\}[,(@<ch_list>)]
CALCulate:SCALe:REFerence:AUTO? [(@<ch_list>)]
Enables or disables automatic reference selection for the scaling functions.
Parameter: 0|1|OFF|ON
Return parameter: $0 \mid 1,(0=O F F, 1=O N)$
ON: the first measurement made is used as the reference for all subsequent measurements, and automatic reference selection is disabled.

OFF:
CALCulate:SCALe:DB:REFerence specifies the reference for DB scaling, CALCulate:SCALe:REFerence specifies the reference for PCT scaling.

Example:
CALC:SCAL:REF:AUTO ON
CALCulate:SCALe:REFerence:IM Mediate [(@<ch_list>)]
Makes an immediate reference measurement on PCT (\%) and dB scaling functions and save the reference value for subsequent measurements.

Parameter: [None]
Example:
CALC:SCAL:REF:IMM

- This command performs the reference measurement on both PCT and dB scaling functions simultaneously.

CALCulate:SCALe[:STATe] \{OFF|ON\}[,(@<ch_list>)]
CALCulate:SCALe[:STATe]? [(@<ch_list>)]
Enables or disables the scaling function.
Parameter: 0|1|OFF|ON
Return parameter: $0 \mid 1,(0=O F F, 1=O N)$
Example:
CALC:SCAL:STAT ON

CALCulate:SCALe:UNIT "<string>"[,(@<ch_list>)]
CALCulate:SCALe:UNIT? [(@<ch_list>)]
To specify the custom unit up to three characters (for example: RPM, PSI, or
${ }^{\circ} \mathrm{C}$) for scaled measurements.
Parameter: "<string>", max length = 3 characters
Return parameter: "<string>"
Example:
CALC:SCAL:UNIT "BAR"
CALC:SCAL:UNIT?
Returns: "BAR"
CALCulate:SCALe:UNIT:STATe \{OFF|ON\}[,(@<ch_list>)]
CALCulate:SCALe:UNIT:STATe? [(@<ch_list>)]
Enables or disables displaying the unit string with measurements on the front panel when the scaling function is enabled.

Parameter: 0|1|OFF|ON
Return parameter: $0 \mid 1,(0=O F F, 1=O N)$
Example:
CALC:SCAL:UNIT "PSI"
CALC:SCAL:UNIT:STAT ON

CONFigure Commands

CONFigure? [(@<ch_list>)]
Returns the present configurations (function, range, and resolution) on the specified channels with a series of quoted strings.

Parameter: [None]
Return parameter: "<present configurations>"
Example:
CONF:VOLT:DC 10,MIN,(@101)
CONF?
Returns: "VOLT +1.00000000E+01,+1.00000000E-05"

CONFigure:CAPacitance
[\{<range>|AUTO|MIN|MAX|DEF\},[\{<resolution>|MIN|MAX|DEF\},]](@%3Cch_list%3E)

Configures the channels for Capcitance measurements.
Parameter: <range> ($1 \mathrm{nF}|10 \mathrm{nF}| 100 \mathrm{nF}|1 \mu \mathrm{~F}| 10 \mu \mathrm{~F} \mid 100 \mu \mathrm{~F}$); DEF: AUTO
Example:
CONF:CAP 10e-7,(@101)
CONFigure:CURRent:\{AC|DC
[\{<range>|AUTO|MIN|MAX|DEF\},[\{<resolution>|MIN|MAX|DEF\},]](@%3Cch_list%3E)

Configures the channels for AC and DC current measurements.
Parameter:
<range>:
AC: $(100 \mu \mathrm{~A}|1 \mathrm{~mA}| 10 \mathrm{~mA}|100 \mathrm{~mA}| 2 \mathrm{~A})$; DEF: AUTO
DC: $(1 \mu \mathrm{~A}|10 \mu \mathrm{~A}| 100 \mu \mathrm{~A}|1 \mathrm{~mA}| 10 \mathrm{~mA}|100 \mathrm{~mA}| 2 \mathrm{~A})$; DEF: AUTO
Example:
CONF:CURR:AC 10e-2,(@121)
CONF:CURR:DC 10e-3,DEF,(@122)

- Autoranging (AUTO or DEFault), will generate an error if you specify a <resolution> because the instrument cannot accurately resolve the integration time (especially if the input continuously changes). If your application requires autoranging, specify DEFault for the <resolution> or omit the <resolution> altogether.

CONFigure:DIODe (@<ch_list>)
Configures the channels for Diode measurements.
Example:
CONF:DIOD (@101)

CONFigure: $\{$ FREQuency|PERiod $\}$
[\{<range>|AUTO|MIN|MAX|DEF\},[\{<resolution>|MIN|MAX|DEF\},]](@%3Cch_list%3E)
Configures the channels for frequency and period measurements

Parameter:
<range>:
Frequency: $3 \mathrm{~Hz} \sim 300 \mathrm{kHz}$; DEF: 20 Hz
Period: $3.33 \mu \mathrm{~s} \sim 333.33 \mathrm{~ms}$; DEF: 50 ms
Example:
CONF:FREQ MAX,(@101) CONF:PER AUTO,DEF,(@101)

CONFigure: $\{$ RESistance|FRESistance $\}$
[\{<range>|AUTO|MIN|MAX|DEF\},[\{<resolution>|MIN|MAX|DEF\},]](@%3Cch_list%3E)

Configures the channels for 2-Wire and 4-Wire resistance measurements.
Parameter:
<range> ($100 \Omega|1 \mathrm{k} \Omega| 10 \mathrm{k} \Omega|100 \mathrm{k} \Omega| 1 \mathrm{M} \Omega|10 \mathrm{M} \Omega| 100 \mathrm{M} \Omega \mid 1 \mathrm{G} \Omega$); DEF:
$1 \mathrm{k} \Omega$
Example:
CONF:RES 1e2,(@101)
CONF:FRES 1e3,MAX,(@101)

- Autoranging (AUTO or DEFault), will generate an error if you specify a <resolution> because the instrument cannot accurately resolve the integration time (especially if the input continuously changes). If your application requires autoranging, specify DEFault for the <resolution> or omit the <resolution> altogether.

CONFigure:STRain:\{DIRect|FDIRect $\}$
[\{<gage_ohms>|MIN|MAX|DEF\},[\{<gage_factor>|MIN|MAX|DEF\}, [\{<range $>\mid$ MIN|MAX|DEF $\},[\{<$ resolution $>\mid$ MIN|MAX|DEF $\}]]]$,$] @<ch$ _list>)

Configures the channels for direct 2-Wire and 4-Wire strain gage measurements.

Parameter:
<gage_ohms> (80~1100 $)$) DEF: 120Ω
<gage_factor> (0.5 ~ 5); DEF: 2
<range> ($100 \Omega|1 \mathrm{k} \Omega| 10 \mathrm{k} \Omega|100 \mathrm{k} \Omega| 1 \mathrm{M} \Omega|10 \mathrm{M} \Omega| 100 \mathrm{M} \Omega \mid 1 \mathrm{G} \Omega$); DEF:
$1 \mathrm{k} \Omega$

Example:
CONF:STR:DIR 100,1,(@101)
CONFigure:STRain:\{FULL|HALF\}:BENDing
[\{<gage_factor $>\mid$ MIN \mid MAX $\mid D E F\},[\{<$ range $>\mid$ MIN|MAX|DEF $\},[\{<$ resol ution>|MIN|MAX|DEF\},]]](@<ch_list>)

Configures the channels for full and half bending bridge strain gage measurements.

Parameter:
<gage_factor> (0.5 ~ 5); DEF: 2
<range> (100 mV | 1V | 10V | 100V | 600V); DEF: AUTO
Example:
CONF:STR:FULL:BEND 1,0.1,(@101)
CONFigure:STRain:\{FULL|HALF\}:POISson
[\{<gage_factor>|MIN|MAX|DEF\},[\{<poisson_ratio>|MIN|MAX|DEF\}, [\{<range>|MIN|MAX|DEF\},[\{<resolution>|MIN|MAX|DEF\},]]]](@<ch _list>)

Configures the channels for full and half poisson bridge strain gage measurements.

Parameter:
<gage_factor> (0.5 ~ 5); DEF: 2
<poisson_ratio> (-0.9999 ~ 0.5); DEF: 0.3
<range> (100 mV | $1 \mathrm{~V} \mid 10 \mathrm{~V}$ | 100 V | 600V); DEF: AUTO
Example:
CONF:STR:FULL:POIS (@101)

CONFigure:STRain:FULL:BENDing:POISson
[\{<gage_factor>|MIN|MAX|DEF\},[\{<poisson_ratio>|MIN|MAX|DEF\}, [\{<range>|MIN|MAX|DEF\},[\{<resolution>|MIN|MAX|DEF\},]]]](@<ch _list>)

Configures the channels for full bending poisson bridge strain gage measurements.

Parameter:
<gage_factor> (0.5 ~ 5); DEF: 2
<poisson_ratio> (-0.9999 ~ 0.5); DEF: 0.3
<range> (100 mV | $1 \mathrm{~V}|10 \mathrm{~V}| 100 \mathrm{~V} \mid 600 \mathrm{~V}$); DEF: AUTO
Example:
CONF:STR:FULL:BEND:POIS 0.5,0.1,(@101)
CONFigure:STRain:QUARter
\{<gage_factor>|MIN|MAX|DEF\},[\{<range $>\mid$ MIN|MAX|DEF $\},[\{<$ resolu tion>|MIN|MAX|DEF\},]](@<ch_list>)

Configures the channels for quarter bridge strain gage measurements.
Parameter:
<gage_factor> (0.5 ~ 5); DEF: 2
<range> (100 mV | 1 V | 10 V | 100 V | 600V); DEF: AUTO
Example:
CONF:STR:QUAR 1,(@101)
CONFigure:TEMPerature
<probe_type>,[\{<type>|DEF\},[\{<resolution>|MIN|MAX|DEF\},]](@<c h_list>)

Configures the channels for temperature measurements.
Parameter:
<probe type> (TCouple \| RTD | FRTD | THERmistor | FTHermistor)
<type>:
TCouple: (B|E|J|K|N|R|S|T|USER) ; DEF: J
RTD / FRTD : (PT100 | D100 | F100 | PT385 | PT3916 | USER) ; DEF: PT100
THERmistor / FTHermistor : $(2.2 \mathrm{k} \Omega|5 \mathrm{k} \Omega| 10 \mathrm{k} \Omega \mid$ USER); DEF: $5 \mathrm{k} \Omega$
Example:
CONF:TEMP TC,K,(@101)

CONFigure[:VOLTage]:\{AC|DC\}
[\{<range>|AUTO|MIN|MAX|DEF\},[\{<resolution>|MIN|MAX|DEF\},]](@%3Cch_list%3E)
Configures the channels for $A C$ and DC voltage measurements
Parameter:
<range>:
AC: (100 mV | $1 \mathrm{~V}|10 \mathrm{~V}| 100 \mathrm{~V} \mid 400 \mathrm{~V}$); DEF:AUTO
DC: ($100 \mathrm{mV}|1 \mathrm{~V}| 10 \mathrm{~V}|100 \mathrm{~V}| 600 \mathrm{~V}$); DEF:AUTO
Example:
CONF:VOLT:AC 10e-2,(@201)
CONF:VOLT:DC 1,MAX,(@101)
\bullet Autoranging (AUTO or DEFault), will generate an error if you specify a <resolution> because the instrument cannot accurately resolve the integration time (especially if the input continuously changes). If your application requires autoranging, specify DEFault for the <resolution> or omit the <resolution> altogether.

DATA Commands

DATA:LAST? [<num_rdgs>,](@%3Cch_list%3E)
Returns the most recent reading or readings taken on the selected channel during the scan.

Parameter: <num_rdgs> (1 ~ 1000)
Return parameter: <NRf>
Example:
DATA:LAST? 1,(@101)
Returns: +0.15900000E+01

- If no data is available for the specified channel, an error will be generated.

DATA:POINts?
Returns the total number of readings currently saved in reading memory from a scan.

Return parameter: <NR1>
Example:
DATA:POIN?
Returns: +10

- You can store up to 100,000 measurements in the reading memory.

DATA:POINts:EVENt:THReshold <num_rdgs>
DATA:POINts:EVENt:THReshold?
Sets or returns the threshold for event number of measurement.

Parameter: <num_rdgs> (1~100,000)
Return parameter: <NR1>
Example:
DATA:POIN:EVEN:THR 20
DATA:POIN:EVEN:THR?
Returns: +20

- When measurement numbers reach the set threshold, the Bit9 within the Operater Event Register (STATus:OPERation:EVENt) will be set as 1.
- Once the Memory Threshold bit (bit 9 in the Standard Operation Event register) is set, it remains set until cleared by STATus:OPERation:EVENt? or *CLS.

DATA:REMove? <num_rdgs>,[WAIT]
Reads and erases measurements from reading memory up to the specified <num_rdgs>. The measurements are read and erased from the reading memory starting with the oldest measurement first.

Parameter: <num_rdgs> (1~100,000)
Example:
DATA:REM? 4
Returns:
$-1.12816521 \mathrm{E}-04,-1.13148354 \mathrm{E}-04,-1.13485152 \mathrm{E}-04,-1.13365632 \mathrm{E}-04$

- You can use the DATA:POINts? query to determine the total number of readings currently in reading memory.
- If <num_rdgs> is greater than the latest counts of measurement, it will return the error. However, it will return data if <num_rdgs> of counts of measurement reach the set threshold only when WAIT parameter is specified.
-The R? and DATA:REMove? queries can be used during a long series of readings to periodically remove readings from memory that would normally cause the reading memory to overflow. R? does not wait for all readings to complete. It sends the readings that are complete at the time the instrument receives the command.
- If reading memory overflows, the new readings will overwrite the first (oldest) readings saved; the most recent readings are always preserved. No error is generated, but the Reading Memory Overflow bit (bit 12) is set in the Questionable Data Register's condition register.

DIGital INTerface Commands

DIGital:INTerface:MODE <type>
DIGital:INTerface:MODE?
Sets or returns the application mode of digital I/O (Remote Control Only). For details, refer to page 131.

Parameter: <type> (COPM | 4094 | IO)
Return parameter: COPM | 4094 | IO
Example:
DIG:INT:MDOE IO

DIGital:INTerface:DATA:OUTPut <data>,<strobe_pulse>
When the 4094 mode (serial to parallel) is selected for digital I/O, make use of this command to set output status.

Parameter: <data> ($0 \sim 255$); <strobe_pulse> ($0 \mid 1$)
Example:
DIG:INT:MDOE 4094
DIG:INT:DATA:OUPT 10,1
DIGital:INTerface:DATA:SETup <boolean>
When the IO mode is selected for digital I/O, make use of this command to set output status.

Parameter: <boolean> (0|1), (DIO1, DIO2, DIO3, DIO4)
Example:
DIG:INT:MDOE IO
DIG:INT:DATA:SET 0,1,0,1
Sets DIO1 to low, DIO2 to high, DIO3 to low, DIO4 to high.

DISPlay Commands

DISPlay \{OFF|ON
DISPlay?
Enables (On) or disables (Off) front panel display. When disabled, the entire front panel display turns black and time stamp is displayed.

Parameter: 0|1|OFF|ON
Return parameter: $0 \mid 1,(0=O F F, 1=O N)$
Example:
DISP ON
-All keys except "Local" are disabled when the display is OFF.
-To enable the display, send DISPlay ON or press the front panel Shift key(Local).

DISPlay:TEXT "<message>"
DISPlay:TEXT?
Displays a text on the instrument's front panel display.
Parameter: "<message>", max length = 40 characters
Return parameter: "<message>"
Example:
DISP:TEXT "testing"

- Sending a text message to the display overrides the display state; this means that you can display a message even if the display is turned off.

DISPlay:TEXT:CLEar
Clears the text message from the display.

- With DISP ON, DISP:TEXT:CLE returns the display to its normal mode.
-With DISP OFF, DISP:TEXT:CLE clears the message and the display remains disabled.

FORMat Commands

FORMat:READing:ALARm \{OFF|ON\}
FORMat:READing:ALARm?
Enables (On) or disables (Off) the inclusion of alarm information in the reading format.

Parameter: 0|1|OFF|ON
Return parameter: $0 \mid 1,(0=O F F, 1=O N)$
Example:
FORM:READ:ALAR ON
FORMat:READing:CHANnel \{OFF|ON\}
FORMat:READing:CHANnel?
Enables (On) or disables (Off) the inclusion of channel number information in the reading format.

Parameter: $0|1|$ OFF |ON
Return parameter: $0 \mid 1,(0=O F F, 1=O N)$
Example:
FORM:READ:CHAN ON

FORMat:READing:TIME \{OFF|ON \}

FORMat:READing:TIME?
Enables (On) or disables (Off) the inclusion of time stamp information in the reading format.

Parameter: 0|1|OFF|ON
Return parameter: $0 \mid 1,(0=O F F, 1=O N)$
Example:
FORM:READ:TIME ON
FORMat:READing:TIME:TYPE \{ABSolute|RELative\}
FORMat:READing:TIME:TYPE?
Selects the time format (absolute or relative) for time stamp returned when FORMat:READing:TIME is enabled.

Parameter: ABSolute | RELative
Return parameter: ABS|REL
Example:
FORM:READ:TIME:TYPE ABS

- Relative format - shows the time since the start of the scan.

Ex: $\frac{+1.12379111 \mathrm{E}-03 \mathrm{VDC}, \frac{00000000.659}{1}}{2} \frac{101}{3}, \frac{2}{4}$

1. Reading with units $(1.124 \mathrm{mV})$
2. Elapsed time (659 ms)
3. Channel number
4. Alarm limit threshold crossed $(0=$ No alarm, $1=\mathrm{LO}, 2=\mathrm{HI})$

- Absolute format - shows the time of the day with the date.
$E x:+\frac{1.12379111 \mathrm{E}-03 \mathrm{VDC}, \frac{2021,01,28}{2}, \frac{00,43,39.218}{3}, \frac{101}{4}, \frac{0}{5}}{3}$

1. Reading with units (1.124 mV)
2. Date(January 28, 2021)
3. Time of day ($0: 43: 39.218 \mathrm{AM}$)
4. Channel number
5. Alarm limit threshold crossed ($0=$ No alarm, $1=\mathrm{LO}, 2=\mathrm{HI}$)

FORMat:READing:UNIT \{OFF|ON \}
FORMat:READing:UNIT?
Enables (On) or disables (Off) the inclusion of measurement units (VAC, VDC, OHM, etc.) in the reading format.

Parameter: 0|1|OFF|ON
Return parameter: $0 \mid 1,(0=O F F, 1=O N)$
Example:
FORM:READ:UNIT ON
FORMat:BORDer \{NORMal|SWAPped\}
FORMat:BORDer?
Used for binary block transfers only. Sets the byte order for binary block transfers using FETCh? command.

Parameter: NORMal | SWAPped
Return parameter: NORM | SWAP
Example:
FORM:BORD NORM

- In the NORMal byte order (default) the most-significant byte (MSB) of each data point is assumed first.

FORMat[:DATA] \{ASCii|REAL\}[,<length>]
FORMat[:DATA]?
Sets the data format to be either ASCII or REAL. Affects the data format of the FETCh? command.

Parameter: ASCii | REAL
Return parameter: ASC | REAL,<length>
Example:
FORM ASC
FORM?
Returns: ASC,9

HCOPy Commands

HCOPy:SDUMp:DATA?
Executes TFT LCD screenshot action.
Returns the front panel display image ("screen shot").
Returns a count of data streaming by the image file format of BMP.

MEASure Commands

```
MEASure:CAPacitance?
[{<range>|AUTO|MIN|MAX|DEF},[{<resolution>|MIN|MAX|DEF},]]
(@<ch_list>)
    Configures the channels for capacitance measurements and immediately
    sweeps through the specified channels one time (independent of
    the present scan list). The results are sent directly to reading memory and
    the instrument's output buffer.
    Parameter: <range> (1nF | 10nF | 100nF | 1 FF| 10\muF | 100\muF); DEF: AUTO
    Example:
        MEAS:CAP? DEF,(@101)
    Returns:+3.72695852E-11
```

```
MEASure:CURRent:\{AC|DC\}?
```

[\{<range $>\mid$ AUTO \mid MIN|MAX|DEF $\},[\{<$ resolution $>|M I N| M A X \mid D E F\}]],($
@<ch_list>)

Configures the channels for AC and DC current measurements and immediately sweeps through the specified channels one time (independent of the present scan list). The results are sent directly to reading memory and the instrument's output buffer.

Parameter:
<range>:
AC: $(100 \mu \mathrm{~A}|1 \mathrm{~mA}| 10 \mathrm{~mA}|100 \mathrm{~mA}| 2 \mathrm{~A})$; DEF: AUTO
DC: $(1 \mu \mathrm{~A}|10 \mu \mathrm{~A}| 100 \mu \mathrm{~A}|1 \mathrm{~mA}| 10 \mathrm{~mA}|100 \mathrm{~mA}| 2 \mathrm{~A})$; DEF: AUTO
Return parameter: <NRf>
Example:
MEAS:CURR:AC 10e-2,(@121,122)
Returns: $+0.32921419 \mathrm{E}-01,+0.15224990 \mathrm{E}-01$

- Autoranging (AUTO or DEFault), will generate an error if you specify a <resolution> because the instrument cannot accurately resolve the integration time (especially if the input continuously changes). If your application requires autoranging, specify DEFault for the <resolution> or omit the <resolution> altogether.

MEASure:DIODe? (@<ch_list>)
Configures the channels for Diode current measurements and immediately sweeps through the specified channels one time (independent of the present scan list). The results are sent directly to reading memory and the instrument's output buffer.

Parameter: [None]
Return parameter: <NRf>
Example:
MEAS:DIOD? (@101)
Returns: +0.69324990E+00
-The range and resolution for diode test are fixed at 1 VDC, with a 1 mA current source output.

```
MEASure:\{FREQuency|PERiod\}?
[\{<range>|AUTO|MIN|MAX|DEF\},[\{<resolution>|MIN|MAX|DEF\}, \(]\) (
@<ch_list>)
```

Configures the channels for frequency and period measurements and immediately sweeps through the specified channels one time (independent of the present scan list). The results are sent directly to reading memory and the instrument's output buffer.

Parameter:
<range>:
AC: 3 Hz to 300 kHz ; DEF: 20 Hz
DC: $3.33 \mu \mathrm{~s}$ to 333.33 ms ; DEF: 50 ms
Return parameter: <NRf>
Example:
MEAS:FREQ? MIN,(@101)
Returns: +5.98876820E+01

```
MEASure:{RESistance|FRESistance}?
[{<range>|AUTO|MIN|MAX|DEF},[{<resolution>|MIN|MAX|DEF},]](
@<ch_list>)
Configures the channels for 2-Wire and 4-Wire resistance measurements and immediately sweeps through the specified channels one time (independent of the present scan list). The results are sent directly to reading memory and the instrument's output buffer.
```

Parameter:
<range> ($100 \Omega|1 \mathrm{k} \Omega| 10 \mathrm{k} \Omega|100 \mathrm{k} \Omega| 1 \mathrm{M} \Omega|10 \mathrm{M} \Omega| 100 \mathrm{M} \Omega \mid 1 \mathrm{G} \Omega$); DEF:
AUTO
Return parameter: <NRf>
Example:
MEAS:RES? 100,(@101)
Returns: +3.98776210E+01

- Autoranging (AUTO or DEFault), will generate an error if you specify a <resolution> because the instrument cannot accurately resolve the integration time (especially if the input continuously changes). If your application requires autoranging, specify DEFault for the <resolution> or omit the <resolution> altogether.

```
MEASure:STRain:{DIRect|FDIRect}?
[{<gage_ohms>|MIN|MAX|DEF},[{<gage_factor>|MIN|MAX|DEF},
[{<range>|MIN|MAX|DEF},[{<resolution>|MIN|MAX|DEF},]]]](@<ch
_list>)
Configures the channels for direct 2-Wire and 4-Wire strain gage measurements and immediately sweeps through the specified channels one time (independent of the present scan list). The results are sent directly to reading memory and the instrument's output buffer.
Parameter:
<gage_ohms> (80~1100 ); DEF: \(120 \Omega\)
<gage_factor> (0.5 ~ 5); DEF: 2
<range> ( \(100 \Omega|1 \mathrm{k} \Omega| 10 \mathrm{k} \Omega|100 \mathrm{k} \Omega| 1 \mathrm{M} \Omega|10 \mathrm{M} \Omega| 100 \mathrm{M} \Omega \mid 1 \mathrm{G} \Omega\) ); DEF:
\(1 \mathrm{k} \Omega\)
Return parameter: <NRf>
Example:
MEAS:STR:DIR 100,1,(@101)
Returns: +7.08176210E+01
```

MEASure:STRain:\{FULL|HALF\}:BENDing?
[\{<gage_factor>|MIN|MAX|DEF\},[\{<range>|MIN|MAX|DEF\},[\{<resol ution>|MIN|MAX|DEF\},]]](@%3Cch_list%3E)

Configures the channels for full and half bending bridge strain gage measurements and immediately sweeps through the specified channels one time (independent of the present scan list). The results are sent directly to reading memory and the instrument's output buffer.

Parameter:
<gage_factor> (0.5 ~ 5); DEF: 2
<range> (100 mV | 1V | 10V | 100V | 600V); DEF: AUTO
Return parameter: <NRf>
Example:
MEAS:STR:FULL:BEND 1,0.1,(@101)
Returns: +7.08176210E-01
MEASure:STRain:\{FULL|HALF\}:POISson?
[\{<gage_factor>|MIN|MAX|DEF\},[\{<poisson_ratio>|MIN|MAX|DEF\}, [\{<range>|MIN|MAX|DEF\},[\{<resolution>|MIN|MAX|DEF\},]]]](@<ch _list>)

Configures the channels for full and half poisson bridge strain gage
measurements and immediately sweeps through the specified channels one time (independent of the present scan list). The results are sent directly to reading memory and the instrument's output buffer.

Parameter:
<gage_factor> (0.5 ~ 5); DEF: 2
<poisson_ratio> (-0.9999 ~ 0.5); DEF: 0.3
<range> (100mV | 1V | 10V | 100V | 600V); DEF: AUTO
Return parameter: <NRf>
Example:
MEAS:STR:FULL:POIS (@101)
Returns: +1.08176210E+00

```
MEASure:STRain:FULL:BENDing:POISson
[{<gage_factor>|MIN|MAX|DEF},[{<poisson_ratio>|MIN|MAX|DEF},
[{<range>|MIN|MAX|DEF},[{<resolution>|MIN|MAX|DEF},]]]](@<ch
_list>)
Configures the channels for full bending poisson bridge strain gage measurements and immediately sweeps through the specified channels one time (independent of the present scan list). The results are sent directly to reading memory and the instrument's output buffer.
```

Parameter:
<gage_factor> (0.5 ~ 5); DEF: 2
<poisson_ratio> (-0.9999 ~ 0.5); DEF: 0.3
<range> (100 mV | $1 \mathrm{~V} \mid 10 \mathrm{~V}$ | 100V | 600V); DEF: AUTO
Return parameter: <NRf>
Example:
MEAS:STR:FULL:BEND:POIS 0.5,0.1,(@101)
Returns: $+0.68176210 \mathrm{E}-01$

```
MEASure:STRain:QUARter
{<gage_factor>|MIN|MAX|DEF},[{<range>|MIN|MAX|DEF},[{<resolu
tion>|MIN|MAX|DEF},]](@<ch_list>)
Configures the channels for quarter bridge strain gage measurements and immediately sweeps through the specified channels one time (independent of the present scan list). The results are sent directly to reading memory and the instrument's output buffer.
```

Parameter:
<gage_factor> (0.5 ~ 5); DEF: 2
<range> (100 mV | 1V | 10V | 100V | 600V); DEF: AUTO
Return parameter: <NRf>
Example:
MEAS:STR:QUAR 1,(@101)
Returns: $+0.28176210 \mathrm{E}+00$

MEASure:TEMPerature?
<probe_type>,[\{<type>|DEF\},[\{<resolution>|MIN|MAX|DEF\},]](@<c h_list>)

Configures the channels for temperature measurements and immediately sweeps through the specified channels one time (independent of the present scan list). The results are sent directly to reading memory and the instrument's output buffer.

Parameter:
<probe type> (TCouple | FRTD | RTD | FTHermistor | THERmistor) <type>:
TCouple: (B|E|J|K|N|R|S|T|USER) ; DEF: J
RTD / FRTD : (PT100 | D100 | F100 | PT385 | PT3916 | USER) ; DEF: PT100
THERmistor / FTHermistor : $(2.2 \mathrm{k} \Omega|5 \mathrm{k} \Omega| 10 \mathrm{k} \Omega \mid$ USER); DEF: $5 \mathrm{k} \Omega$
Example:
MEAS:TEMP TC,K,(@101)
Returns: +2.51176210E+01
MEASure[:VOLTage]:\{AC|DC\}?
[\{<range>|AUTO|MIN|MAX|DEF\},[\{<resolution>|MIN|MAX|DEF\},]](@%3Cch_list%3E)

Configures the channels for $A C$ and DC voltage measurements
Parameter:
<range>:
AC: ($100 \mathrm{mV}|1 \mathrm{~V}| 10 \mathrm{~V}|100 \mathrm{~V}| 400 \mathrm{~V}$); DEF:AUTO
DC: ($100 \mathrm{mV}|1 \mathrm{~V}| 10 \mathrm{~V}|100 \mathrm{~V}| 600 \mathrm{~V}$); DEF:AUTO

Example:
MEAS:VOLT:AC 100,(@101)
Returns: +3.71176210E+01

- Autoranging (AUTO or DEFault), will generate an error if you specify a <resolution> because the instrument cannot accurately resolve the integration time (especially if the input continuously changes). If your application requires autoranging, specify DEFault for the <resolution> or omit the <resolution> altogether.

MMEMory Commands

```
MMEMory:FORMat:READing:CHEAder {NUMber|LABel}
MMEMory:FORMat:READing:CHEAder?
    Specifies the content of each column header to be either the channel
    number (NUMber) or the channel's user-defined label (LABel).
    Parameter: NUMber | LABel
    Return parameter: NUM | LAB
    Example:
        MMEM:FORM:READ:CHEA LAB
    -If the value of the column header is set to LABel using the
    ROUTe:CHANnel:LABel command, any channel without a user-defined
    label will display its factory-default channel label instead on its column
    header.
MMEMory:FORMat:READing:CSEParator {COMMa|SEMicolon|TAB}
MMEMory:FORMat:READing:CSEParator?
    Specifies the character to use for separating the information on each row.
    Parameter: COMMa | SEMicolon | TAB
    Return parameter: COMM | SEM | TAB
    Example:
        MMEM:FORM:READ:CSEP COMM
MMEMory:FORMat:READing:RLIMit {OFF|ON}
MMEMory:FORMat:READing:RLIMit?
    Specifies the row limit (maximum number of rows for sweep data) that will
    be written to each data logging file by the count set by
    MMEMory:FORMat:READing:RLIMit:COUNt command.
    Parameter: 0| 1 | OFF|ON
    Return parameter: 0| 1, (0 = OFF, 1 = ON)
    Example:
        MMEM:FORM:READ:RLIM ON
```

MMEMory:FORMat:READing:RLIMit:COUNt
\{<number>|MIN|MAX|DEF\}
MMEMory:FORMat:READing:RLIMit:COUNt? [\{MIN|MAX|DEF\}]
Sets the row limits count when MMEMory:FORMat:READing:RLIMit ON is set.

Parameter: <number> (65536 | 1048576); DEF: 65536
Return parameter: <NR1>
Example:
MMEM:FORM:READ:RLIM:COUN 10000
MMEMory:LOG[:ENABle] \{OFF|ON\}
MMEMory:LOG[:ENABle]?
Enables (On) or disables (Off) logging of the scanned memory readings to a USB drive connected to the front panel USB host port.

Parameter: 0|1|OFF|ON
Return parameter: $0 \mid 1,(0=O F F, 1=O N)$
Example:
MMEM:LOG ON

Output Commands

OUTPut:ALARm:CLEar:ALL

Clears the state of all four alarm output lines.
Parameter: [None]
Example:
OUTP:ALAR:CLE

- You can manually clear the output lines at any time (even during a scan) and the alarm data in reading memory is not cleared. However, data is cleared when you initiate a new scan.

OUTPut:ALARm $\{1|2| 3 \mid 4\}$:CLEar
Clears the state of specified alarm output lines.
Parameter: [None]
Example:
OUTP:ALAR3:CLE

- You can manually clear the output lines at any time (even during a scan) and the alarm data in reading memory is not cleared. However, data is cleared when you initiate a new scan.

OUTPut:ALARm\{1|2|3|4\}:SOURce (@<ch_list>)
OUTPut:ALARm\{1|2|3|4\}:SOURce?
Assigns one of four alarm numbers to report any alarm conditions on the specified multiplexer or digital channels.
On the digital modules, you can configure the instrument to generate an alarm when a specific bit pattern or bit pattern change is detected on a digital input channel or when a specific count is reached on a totalizer channel.

Parameter: [None]
Example:
OUTP:ALAR3:SOUR (@101:104)
OUTP:ALAR3:SOUR?
Returns: \#218(@101,102,103,104)
The "\#2" means that the next 2 digits indicate how many characters are in the returned memory string.
In the above example, the 2 digits are the "18" after the "\#2". Therefore, the remaining of the string is 18 digits long.
-An empty scan list (with no channels selected) will return "\#13(@)".
OUTPut:ALARm:MODE \{LATCh|TRACk\}
OUTPut:ALARm:MODE?
Clears the state of specified alarm output lines.
Parameter: LATCh | TRACk
Return parameter: LATC | TRAC
Example:
OUTP:ALAR:MODE LATC

- Latch Mode: The alarm output is asserted when a channel's reading crosses a limit, and remains asserted until you clear it manually, start a new scan, or cycle power.
- Track Mode: The alarm output is asserted when a channel's reading crosses a limit, and remains asserted only while subsequent readings remain outside the limit. When a reading returns within the limits, the output is automatically cleared.

OUTPut:ALARm:SLOPe \{POSitive|NEGative\}
OUTPut:ALARm:SLOPe?
Configures the level for all four alarm output lines that indicates an alarm, either falling edge (NEG-0 V), or rising edge (POS-3.3 V).

Parameter: POSitive | NEGative
Return parameter: POS|NEG
Example:
OUTP:ALAR:SLOP POS
OUTPut:TRIGger:SLOPe \{POSitive|NEGative\}
OUTPut:TRIGger:SLOPe?
Specifies the rising edge (POS) or falling edge (NEG) as the Channel
Closed signal on the rear panel Digital I/O connector. The signal operates differently during internal or external scan.

Parameter: POSitive | NEGative
Return parameter: POS \| NEG
Example:
OUTP:TRIG:SLOP POS

- For internal scans (INSTrument:DMM ON command), it is generated at the END of a sweep, not the beginning of a sweep.
- For external scans (INSTrument:DMM OFF command), it is generated when each channel is closed, and can be used to trigger the measurement on the external DMM.

ROUTe Commands

ROUTe:CHANnel:ADVance:SOURce \{BUS|IMMediate|EXTernal\}
ROUTe:CHANnel:ADVance:SOURce?
Selects the source of signal that advances to the next channel in the scan list when scanning with an external DMM (internal DMM disabled). When the channel advance signal is received, the instrument opens the currently selected channel and closes the next channel in the scan list. The instrument will accept a software command (BUS), continuous scan trigger (IMMediate), or external TTL-compatible (EXTernal) trigger pulse.

Parameter: BUS |IMMediate | EXTeran
Return parameter: BUS|IMM | EXT
Example:
ROUT:CHAN:ADV:SOUR IMM
ROUTe:CHANnel:DELay \{<seconds>IMIN|MAX\}[,(@<ch_list>)]
ROUTe:CHANnel:DELay? [\{(@<ch_list>)|MIN|MAX\}]?
Adds a delay between channels in the scan list (useful for high-impedance or high-capacitance circuits). The delay is inserted between the relay closure and the actual measurement on each channel, in addition to any delay that will implicitly occur due to relay settling time. The programmed channel delay overrides the default channel delay that the instrument automatically adds to each channel.

Parameter: <seconds> (0~60s)
Return parameter: <NRf>
Example:
ROUT:CHAN:DEL 2
ROUT:CHAN:DEL?
Returns: +2.00000000E+00
ROUTe:CHANnel:DELay:AUTO \{OFF|ON\}[,(@<ch_list>)]
ROUTe:CHANnel:DELay:AUTO? [(@<ch_list>)]
Enables (On) or disables (Off) an automatic channel delay on the specified channels. If enabled, the instrument determines the delay based on function, range, integration time, and AC filter setting.

Parameter: 0|1|OFF|ON
Return parameter: $0 \mid 1,(0=O F F, 1=O N)$
Example:
ROUT:CHAN:DEL:AUTO ON

ROUTe:CHANnel:FWIRe \{OFF|ON\}[,(@<ch_list>)]
ROUTe:CHANnel:FWIRe? [(@<ch_list>)]
Configures the specified channels for 4 -wire external scanning. When enabled, channel n is paired with channel $n+10$ (DAQ-900 or DAQ-901) or $\mathrm{n}+4$ (DAQ-909) to provide source and sense connections.

Parameter: 0|1|OFF|ON
Return parameter: $0 \mid 1,(0=O F F, 1=O N)$
Example:
INST:DMM OFF
ROUT:CHAN:FWIRe ON,(@101,102)
-When specifying the scan list using ROUTe:SCAN, only specify the lower channel number (n) for paired channels; the upper channel number ($n+10$ or $n+4$) is not allowed in the scan list.

ROUTe:CHANnel:LABel "<label>", (@<ch_list>)
ROUTe:CHANnel:LABel? [\{USER|FACtory\},](@%3Cch_list%3E)
Assigns a user-defined label to the specified channels.
Parameter:"<label>", max length = 30 characters
Return parameter: "<label>"
USER = Read the user-defined label on the specified channel.
FACTory = Read the factory-default label on the specified channel.
Example:
ROUT:CHAN:LAB "test",(@101,103)
ROUT:CHAN:LAB? USER,(@101,103)
Returns: "test","test"

- When shipped from the factory, each channel is assigned a unique factory-default label (cannot be overwritten).
- Specifying a null string ("") disables the user-defined message.

ROUTe:CHANnel:LABel:CLEar:MODule $\{<$ slot $>\mid A L L\}$
Clears all user-defined labels on all channels in the specified slot, or on all modules installed in the DAQ9600, and restores the factory-default labels.

Parameter: <slot> (1~3) |ALL
Example:
ROUT:CHAN:LAB:CLE:MOD 1
-This command does not clear the factory-default channel labels. The factory-default labels are always preserved.

- The instrument keeps a record of what module types are installed in each slot. If a different module type is detected in a specific slot at power on, all user-defined channel labels for that slot are discarded. If an empty slot is detected at power-on, any previously-defined labels for that slot are preserved and will be restored if the same module type is installed later; however, if a module of a different type is installed in that slot, the previously-defined labels will be discarded.

ROUTe:CLOSe (@<ch_list>)
ROUTe:CLOSe? (@<ch_list>)
Closes the specified channels on a multiplexer or switch module. On the multiplexer modules, if any channel on the module is defined to be part of the scan list, attempting to send this command will result in an error.

Parameter: [None]
Return parameter: $0 \mid 1,(0=$ open, $1=$ close $)$
Example:
ROUT:CLOS (@101,102)
ROUT:CLOS? (@101,102)
Returns: 1,1

- For the matrix module (DAQ-904), the channel number represents the intersection of the desired row and column. For example, channel 312 represents the intersection of row 1 and column 2 on the module in slot 3 (assumes two-wire mode).

ROUTe:CLOSe:EXCLusive (@<ch_list>)
Opens all channels on a multiplexer or switch module and then closes the specified channels. On the multiplexer modules, if any channel on the module is defined to be part of the scan list, attempting to send this command will result in an error.

Parameter: [None]
Example:
ROUT:CLOS:EXCL (@102)
Returns: 1,1
-This command opens all channels first, and then closes the channels in the <ch_list>, one at a time. Before it closes each channel, it opens all previous channels.

ROUTe:DONE?

Returns the status of all relay operations on modules that not involved in the scan and returns a 1 when finished (even during a scan).

Return parameter: $0 \mid 1,(0=$ Unfinished, $1=$ finished $)$
Example:
ROUT:DONE?
Returns: 1
ROUTe:MONitor (@<channel>)
ROUTe:MONitor?
Selects the channel to be displayed on the front panel. Only one channel can be monitored at a time.

Parameter: A single channel
Return parameter: <channel>
Example:
ROUT:MON(@101)
ROUT: MON?
Returns: \#16(@101)
The "\#1" means that the next 1 digits indicate how many characters are in the returned memory string.
In the above example, the 1 digits are the " 6 " after the "\#1". Therefore, the remaining of the string is 6 digits long.

ROUTe:MONitor:DATA?
Reads the monitor data from the selected channel. It returns the reading only; the units, time, channel, and alarm information are not returned (the FORMat:READing commands do not apply to monitor readings).

Return parameter: <NRf>
Example:
ROUT:MON:STAT OFF
ROUT:MON:DATA?
Returns: +9.91000000E+37

- If the Monitor mode is not currently enabled, this query returns 9.91E37 (not a number).
- Readings acquired during a Monitor are not stored in reading memory but they are displayed on the front panel; however, all readings from a scan in progress at the same time are stored in reading memory.

ROUTe:MONitor:DATA:FULL?
Reads the monitor data from the selected channel. It returns all the reading with the units, time, channel, and alarm information (all the FORMat:READing enabled commands apply to this monitor readings).

Return parameter: <NRf

Example:
ROUT:MON:STAT ON
ROUT:MON:DATA:FULL?
Returns: -1.20901311E-04 VDC,2022,04,17,20,15,08.613,201,0

- If the Monitor mode is not currently enabled, this query returns 9.91E37 (not a number).
- Readings acquired during a Monitor are not stored in reading memory but they are displayed on the front panel; however, all readings from a scan in progress at the same time are stored in reading memory.

ROUTe:MONitor:STATe \{OFF|ON\}

ROUTe:MONitor:STATe?

Enables (On) or disables (Off) the Monitor mode. The Monitor mode is equivalent to making continuous measurements on a single channel with an infinite scan count. Only one channel can be monitored at a time but you can change the channel being monitored at any time.

Parameter: 0|1|OFF|ON
Return parameter: $0 \mid 1,(0=O F F, 1=O N)$
Example:
CONF:RES 1000,(@101)
ROUT:MON (@101)
ROUT:MON:STAT ON
ROUTe:MONitor:VIEW \{NUMeric|TCHart|HISTogram|METer\}
ROUTe:MONitor:VIEW?
Selects how measurement data is displayed (numeric, trend chart, histogram, and bar meter format) in monitoring mode.

Parameter: NUMeric | TCHart | HISTogram | METer
Return parameter: NUM | TCH | HIST | MET
Example:
ROUT:MON:VIEW NUM
ROUTe:OPEN (@<ch_list>)
ROUTe:OPEN? (@<ch_list>)
Opens the specified channels on a multiplexer or switch module. On the multiplexer modules, if any channel on the module is defined to be part of the scan list, attempting to send this command will result in an error.

Return parameter: 0 | 1, (0 = close, $1=$ open $)$
Example:
ROUT:OPEN (@101,102)
ROUT:OPEN? (@101,102)
Returns: 1,1

- For the matrix module (DAQ-904), the channel number represents the intersection of the desired row and column. For example, channel 312 represents the intersection of row 1 and column 2 on the module in slot 3 (assumes two-wire mode).

ROUTe:SCAN (@<ch_list>)
ROUTe:SCAN?
Selects the channels to be included in the scan list. This command is used in conjunction with the CONFigure commands to set up an automated scan. The specified channels supersede any channels previously defined to be part of the scan list. To start the scan, use the INITiate or READ? command.

Parameter: [None]
Return parameter: <channel>
Example:
ROUT:SCAN (@101,102)
ROUT:SCAN?
Returns: \#210(@101,102)
The "\#2" means that the next 2 digits indicate how many characters are in the returned memory string.
In the above example, the 2 digits are the " 10 " after the "\#2". Therefore, the remaining of the string is 10 digits long.

- To remove all channels from the present scan list, issue the command ROUT:SCAN (@).
-An empty scan list (with no channels selected) will return "\#13(@)".
ROUTe:SCAN:SIZE?
Returns the number of channels in the scan list as defined by the ROUTe:SCAN command.

Return parameter: <NR1>
Example:
ROUT:SCAN (@101:105) ROUT:SCAN:SIZE?
Returns: +5
-The present scan list is stored in non-volatile memory and will be retained when power is turned off.

SENSe Related Commands

[SENSe:]FUNCtion[:ON] "<function>"[,(@<ch_list>)]
[SENSe:]FUNCtion[:ON]? [(@<ch_list>)]
Selects the measurement function on the selected channels (all function-related measurement attributes areretained).

Parameter:

Return Parameter:
"CAP" | "CURR:AC" | "CURR[:DC]" | "DIOD" | "FREQ" | "PER" | "FRES" |
"RES" | "STR:DIR" | "STR:FDIR" | "STR:QUAR" | "STR:HALF:BEND" |
"STR:HALF:POIS" | "STR:FULL:BEND" | "STR:FULL:BEND:POIS" |
"STR:FULL:POIS" | "TEMP[:TC]" | "TEMP:FRTD" | "TEMP:RTD" |
"TEMP:FTH" | "TEMP:THER" | "VOLT:AC" | "VOLT[:DC]"
Example:
FUNC "RES"

SENSe AVERage Commands

[SENSe:]AVERage:COUNt \{<count>|MIN|MAX\}[,(@<ch_list>)]
[SENSe:]AVERage:COUNt? [\{(@<ch_list>)|MIN|MAX\}]
Sets or returns the digital filter count.
Parameter: <count> (2~100)
Return parameter: <NRf>
Example:
AVER:COUN MIN
AVER:COUN?
Returns: $+0.20000000 \mathrm{E}+00$
[SENSe:]AVERage:STATe \{OFF|ON\}[,(@<ch_list>)]
[SENSe:]AVERage:STATe? [(@<ch_list>)]
Enable(On) or disable(Off) the digital filter function state.
Parameter: 0|1|OFF|ON
Return parameter: $0 \mid 1,(0=O F F, 1=O N)$
Example:
AVER:STAT ON

- If NPLC $>=7.2 \mathrm{k} / \mathrm{s}$, the filter function will be disabled.
[SENSe:]AVERage:WINDow \{<percent>|MIN|MAX\}[,(@<ch_list>)]
[SENSe:]AVERage:WINDow? [\{(@<ch_list>)|MIN|MAX\}]
Sets or returns a digital filter window value.
Parameter: <percent> (0.01|0.1|1|10|NONE)
Return parameter: <NRf>
Example:
AVER:WIND 0.1
[SENSe:]AVERage:WINDow:METHod <type>[,(@<ch_list>)]
[SENSe:]AVERage:WINDow:METHod? [(@<ch_list>)]
Sets or returns a digital filter window method type.
Parameters: <type> (MEASure | RANGe)
Return parameter: MEASure | RANGe
Example:
AVER:WIND:METH MEAS

SENSe CAPacitance Commands

[SENSe:]CAPacitance:RANGe
\{<range>|MIN|MAX|DEF\}[,(@<ch_list>)]
[SENSe:]CAPacitance:RANGe? [\{(@<ch_list>)|MIN|MAX|DEF\}]
Selects a fixed range for capacitance measurements.
Parameter: <range> ($1 \mathrm{nF}|10 \mathrm{nF}| 100 \mathrm{nF}|1 \mu \mathrm{~F}| 10 \mu \mathrm{~F} \mid 100 \mu \mathrm{~F})$; DEF:AUTO
Return parameter: <NRf>
Example:
CONF:CAP (@101)
CAP:RANG le-6
CAP:RANG?
Returns: +1.00000000E-06
[SENSe:]CAPacitance:RANGe:AUTO \{OFF|ON\}[,(@<ch_list>)]
[SENSe:]CAPacitance:RANGe:AUTO? [(@<ch_list>)]
Enables or disables autoranging for capacitance measurements.
Parameter: $0|1| O F F \mid O N$
Return parameter: $0 \mid 1,(0=O F F, 1=O N)$
Example:
CONF:CAP (@101)
CAP:RANG:AUTO ON

- Autorange thresholds:

Down range at: < 10\% of range
Up range at: > 120\% of range

SENSe CURRent Commands

[SENSe:]CURRent:AC:BANDwidth
\{<freq>|MIN|MAX|DEF\}[,(@<ch_list>)]
[SENSe:]CURRent:AC:BANDwidth? [\{(@<ch_list>)|MIN|MAX|DEF\}]
Sets or returns the ac filter bandwith for $A C$ current measurements.

Parameter: <freq> (3 | 20 | 200Hz); DEF: 20Hz
Return parameter: <NRf>
Example:
CONF:CURR:AC (@121)
CURR:AC:BAND 3
CURR:AC:BAND?
Returns: $+3.00000000 \mathrm{E}+00$
[SENSe:]CURRent:\{AC|DC\}:RANGe
\{<range>|MIN|MAX|DEF\}[,(@<ch_list>)]
[SENSe:]CURRent:\{AC|DC\}:RANGe? [\{(@<ch_list>)|MIN|MAX|DEF\}] Selects a fixed range for $A C$ and $D C$ current measurements.

Parameter:
<range>:
AC: $(100 \mu \mathrm{~A}|1 \mathrm{~mA}| 10 \mathrm{~mA}|100 \mathrm{~mA}| 2 \mathrm{~A})$; DEF:AUTO
DC: $(1 \mu \mathrm{~A}|10 \mu \mathrm{~A}| 100 \mu \mathrm{~A}|1 \mathrm{~mA}| 10 \mathrm{~mA}|100 \mathrm{~mA}| 2 \mathrm{~A})$; DEF:AUTO
Return parameter: <NRf>
Example:
CONF:CURR:AC (@121)
CURR:AC:RANG 0.1
CURR:AC:RANG?
Returns: $+1.00000000 \mathrm{E}-01$
[SENSe:]CURRent:\{AC|DC\}:RANGe:AUTO \{OFF|ON\}[,(@<ch_list>)]
[SENSe:]CURRent:\{AC|DC\}:RANGe:AUTO? [(@<ch_list>)]
Enables or disables autoranging for $A C$ and DC current measurements.
Parameter: 0|1|OFF|ON
Return parameter: $0 \mid 1,(0=O F F, 1=O N)$
Example: CONF:CURR:AC (@101) CURR:AC:RANG:AUTO ON

- Autorange thresholds:

Down range at: < 10\% of range
Up range at: > 120\% of range
[SENSe:]CURRent:\{AC|DC\}:RANGe:LOW
\{<range>|MIN|MAX|DEF\}[,(@<ch_list>)]
[SENSe:]CURRent:\{AC|DC\}:RANGe:LOW?
[\{(@<ch_list>)|MIN|MAX|DEF\}]
Selects a limit minimum current at autoranging for AC and DC current measurements.

Parameter:
<range>:
AC: $(100 \mu \mathrm{~A}|1 \mathrm{~mA}| 10 \mathrm{~mA} \mid 100 \mathrm{~mA})$, DEF: 100 uA
DC: $(1 \mu \mathrm{~A}|10 \mu \mathrm{~A}| 100 \mu \mathrm{~A}|1 \mathrm{~mA}| 10 \mathrm{~mA} \mid 100 \mathrm{~mA})$, DEF: 1 uA
Return parameter: <NRf>
Example:
CONF:CURR:AC (@121)
CURR:AC:RANG:LOW 0.01 CURR:AC:RANG:LOW?
Returns: +1.00000000E-02
[SENSe:]CURRent[:DC]:APERture
\{<seconds>|MIN|MAX|DEF\}[,(@<ch_list>)]
[SENSe:]CURRent[:DC]:APERture? [\{(@<ch_list>)|MIN|MAX|DEF\}]
Enables the aperture mode and sets the integration time in seconds (called aperture time) for DC current measurements.

Parameter: <seconds> (20 $\mu \mathrm{s}$ ~ 1s); DEF: 100ms
Return parameter: <NRf>
Example:
CONF:CURR:DC (@121)
CURR:APER 0.1
CURR:APER?
Returns: +1.00000000E-01
[SENSe:]CURRent[:DC]:APERture:ENABle \{OFF|ON\}[,(@<ch_list>)]
[SENSe:]CURRent[:DC]:APERture:ENABle? [\{(@<ch_list>)]
Enables the setting of integration time in seconds (called aperture time) for DC current measurements. If aperture time mode is disabled, the integration time is set in PLC (power-line cycles).

Parameter: 0|1|OFF|ON
Return parameter: $0 \mid 1,(0=O F F, 1=O N)$
Example:
CONF:CURR:DC (@121)
CURR:APER:ENAB ON
[SENSe:]CURRent[:DC]:NPLCycles
\{<PLCs>|MIN|MAX|DEF\}[, (@<ch_list>)]
[SENSe:]CURRent[:DC]:NPLCycles? [\{(@<ch_list>)|MIN|MAX|DEF\}]
Sets or returns the integration time in number of power line cycles (PLCs)
for DC current measurements. Where one PLC is equal to 16.6
milliseconds.

Parameter: <PLCs> $(0.0016|0.0032| 0.0042|0.0083| 0.0125|0.025| 0.05 \mid$
0.15 | $0.6|1| 3 \mid 12$); DEF: 1 PLC

Return parameter: <NRf>
Example:
CONF:CURR (@121)
CURR:NPLC 1
CURR:NPLC?
Returns: $+1.00000000 \mathrm{E}+00$
[SENSe:]CURRent[:DC]:ZERO:AUTO \{OFF|ON\}[,(@<ch_list>)]
[SENSe:]CURRent[:DC]:ZERO:AUTO? [(@<ch_list>)]
Enables or disables the autozero mode for DC current measurements.

Parameter: 0|1|OFF|ON
Return parameter: $0 \mid 1,(0=O F F, 1=O N)$
Example:

SENSe DIODe Commands

[SENSe:]DIODe:ZERO:AUTO \{OFF|ON\}[,(@<ch_list>)]
[SENSe:]DIODe:ZERO:AUTO? [(@<ch_list>)]
Enables or disables the autozero mode for diode measurements.
Parameter: 0| 1 |OFF|ON
Return parameter: $0 \mid 1,(0=O F F, 1=O N)$
Example:
CONF:DIOD (@101)
DIOD:ZERO:AUTO ON

SENSe FREQuency Commands

[SENSe:]\{FREQuency|PERiod\}:APERture
\{<seconds>|MIN|MAX|DEF\}[,(@<ch_list>)]
[SENSe:]\{FREQuency|PERiod\}:APERture?
[\{(@<ch_list>)|MIN|MAX|DEF\}]
Sets or returns the aperture time (gate time) for the frequency and period measurements.

Parameter: <seconds> (0.001 | 0.01 | 0.1 | 1s); DEF: 0.1 s
Return parameter: <NRf>
Example:
CONF:FREQ (@101)
FREQ:APER 0.1
FREQ:APER?
Returns: $+1.00000000 \mathrm{E}-01$

```
[SENSe:]{FREQuency|PERiod}:RANGe:LOWer
{<freq>|MIN|MAX|DEF}[,(@<ch_list>)
[SENSe:]{FREQuency|PERiod}:RANGe:LOWer?
[{(@<ch_list>)|MIN|MAX|DEF}]
    Sets or returns the ac filter bandwith of frequency and period
    measurements.
    Parameter: <freq> (3 | 20 | 200Hz); DEF: 20Hz
    Return parameter: <NRf>
    Example:
        CONF:FREQ (@101)
        FREQ:RANG:LOW 3
        FREQ:RANG:LOW?
    Returns: +3.00000000E+00
```

[SENSe:]\{FREQuency|PERiod\}:TIMeout:AUTO
\{OFF|ON\}[,(@<ch_list>)]
[SENSe:]\{FREQuency|PERiod\}:TIMeout:AUTO? [(@<ch_list>)]
Sets or returns the timeout time for frequency and period measurements.
Parameter: $0|1| O N \mid O F F$
Return parameter: $0 \mid 1$, (0 :timeout time $=1$ second, 1 :timeout time is
different in according with ac filter bandwith)
Example:
CONF:PER
PER:TIM:AUTO ON
[SENSe:]\{FREQuency|PERiod\}:VOLTage:RANGe
\{<range>|MIN|MAX|DEF\}[,(@<ch_list>)]
[SENSe:]\{FREQuency|PERiod\}:VOLTage:RANGe?
[\{(@<ch_list>)|MIN|MAX|DEF\}]
Selects a fixed voltage range for frequency and period measurements.
Parameter: <range> (100 mV | 1V | 10V | 100V | 400V); DEF: 10 V
Return parameter: <NRf>
Example:
CONF:FREQ (@101)
FREQ:VOLT:RANG 0.1
FREQ:VOLT:RANG?
Returns: +1.00000000E-01
[SENSe:]\{FREQuency|PERiod\}:VOLTage:RANGe:AUTO \{OFF|ON\}[,(@<ch_list>)]
[SENSe:]\{FREQuency|PERiod\}:VOLTage:RANGe:AUTO?
[(@<ch_list>)]
Enables or disables voltage autoranging for frequency and period measurements.

Parameter: 0|1|OFF|ON
Return parameter: $0 \mid 1,(0=O F F, 1=O N)$
Example:
CONF:FREQ (@101) FREQ:VOLT:RANG:AUTO ON

- Autorange thresholds:

Down range at: < 10% of range
Up range at: > 120\% of range

SENSe RESistance Commands

[SENSe:]\{RESistance|FRESistance\}:APERture \{<seconds>|MIN|MAX|DEF\}[,(@<ch_list>)]
[SENSe:]\{RESistance|FRESistance\}:APERture?
[(@<ch_list>)|MIN|MAX|DEF\}]
Enables the aperture mode and sets the integration time in seconds (called aperture time) for 2 -wire and 4 -wire resistance measurements.

Parameter: <seconds> (20 ss ~ 1s); DEF: 100ms
Return parameter: <NRf>
Example:
CONF:RES (@101)
RES:APER 0.1
RES:APER?
Returns: +1.00000000E-01

```
[SENSe:]\{RESistance|FRESistance\}:APERture:ENABle
\{OFF|ON\}[,(@<ch_list>)]
[SENSe:]\{RESistance|FRESistance\}:APERture:ENABle?
[(@<ch_list>)]
    Enables the setting of integration time in seconds (called aperture time) for
    2 -wire and 4 -wire resistance measurements. If aperture time mode is
    disabled, the integration time is set in PLC (power-line cycles).
    Parameter: 0|1|OFF|ON
    Return parameter: \(0 \mid 1,(0=O F F, 1=O N)\)
    Example:
        CONF:RES (@101)
        RES:APER:ENAB ON
[SENSe:]\{RESistance|FRESistance\}:NPLCycles
\{<PLCs>|MIN|MAX|DEF\}[,(@<ch_list>)]
[SENSe:]\{RESistance|FRESistance\}:NPLCycles?
[\{(@<ch_list>)|MIN|MAX|DEF\}]
    Sets or returns the integration time in number of power line cycles (PLCs)
    for 2-wire and 4 -wire resistance measurements. Where one PLC is equal to
    16.6 milliseconds.
    Parameter: <PLCs> \((0.0016|0.0032| 0.0042|0.0083| 0.0125|0.025| 0.05 \mid\)
    0.15 | \(0.6|1| 3 \mid 12\) ); DEF: 1 PLC
    Return parameter: <NRf>
    Example:
        CONF:RES (@101)
        RES:NPLC 1
        RES:NPLC?
    Returns: \(+1.00000000 \mathrm{E}+00\)
```

[SENSe:]\{RESistance|FRESistance\}:OCOMpensated \{OFF|ON\}[,(@<ch_list>)]
[SENSe:]\{RESistance|FRESistance\}:OCOMpensated? [(@<ch_list>)]
Enables or disables offset compensation for 2-wire and 4-wire resistance measurements.

Parameter: $0|1| O F F \mid O N$
Return parameter: $0 \mid 1,(0=O F F, 1=O N)$
Example:
CONF:RES (@101)
RES:OCOM ON

- Applies only to resistance measurements on the 100Ω through $100 \mathrm{k} \Omega$ ranges.
[SENSe:]\{RESistance|FRESistance\}:POWer:LIMit[:STATe] \{OFF|ON\}[,(@<ch_list>)]
[SENSe:]\{RESistance|FRESistance\}:POWer:LIMit[:STATe]?
[(@<ch_list>)]
Enables or disables low-power for 2-wire and 4-wire resistance measurements.

Parameter: 0| 1 |OFF|ON
Return parameter: $0 \mid 1,(0=O F F, 1=O N)$
Example:
CONF:RES (@101)
RES:POW:LIM ON

- Low-power resistance measurements apply to the 100Ω through $100 \mathrm{k} \Omega$ ranges only. The $1 \mathrm{M} \Omega$ through $1 \mathrm{G} \Omega$ ranges source the same current regardless of the low-power setting.
[SENSe:]\{RESistance|FRESistance\}:RANGe \{<range>|MIN|MAX|DEF\}[,(@<ch_list>)]
[SENSe:]\{RESistance|FRESistance\}:RANGe?
[\{(@<ch_list>)|MIN|MAX|DEF $\}$]
Selects a fixed range for 2-wire and 4-wire resistance measurements.
Parameter:
<range> ($100 \Omega|1 \mathrm{k} \Omega| 10 \mathrm{k} \Omega|100 \mathrm{k} \Omega| 1 \mathrm{M} \Omega|10 \mathrm{M} \Omega| 100 \mathrm{M} \Omega \mid 1 \mathrm{G} \Omega$); DEF:
$1 \mathrm{k} \Omega$
Return parameter: <NRf>
Example:
CONF:FRES (@101)
FRES:RANG 10e3
FRES:RANG?
Returns: $+1.00000000 \mathrm{E}+04$
[SENSe:]\{RESistance|FRESistance\}:RANGe:AUTO
\{OFF|ON\}[,(@<ch_list>)]
[SENSe:]\{RESistance|FRESistance\}:RANGe:AUTO? [(@<ch_list>)]
Enables or disables autoranging for 2-wire and 4-wire resistance measurements.

Parameter: $0|1|$ OFF |ON
Return parameter: $0 \mid 1,(0=O F F, 1=O N)$
Example:
CONF:FRES (@101)
FRES:RANG:AUTO ON

- Autorange thresholds:

Down range at: < 10% of range
Up range at: > 120\% of range

```
[SENSe:]{RESistance|FRESistance}:ZERO:AUTO
{OFF|ON}[,(@<ch_list>)]
```

[SENSe:]\{RESistance|FRESistance\}:ZERO:AUTO? [(@<ch_list>)]

Enables or disables the autozero mode for 2-wire and 4-wire resistance measurements.

Parameter: 0|1|OFF|ON
Return parameter: $0 \mid 1,(0=O F F, 1=O N)$

Example:
CONF:FRES (@101)
FRES:ZERO:AUTO ON

SENSe STRain Commands

```
[SENSe:]STRain:APERture
{<seconds>|MIN|MAX|DEF}[,(@<ch_list>)]
[SENSe:]STRain:APERture? [{(@<ch_list>)|MIN|MAX|DEF}]
    Enables the aperture mode and sets the integration time in seconds (called
    aperture time) for strain measurements.
    Parameter: <seconds> (20\mus ~ 1s); DEF: 100ms
    Return parameter: <NRf>
    Example:
        CONF:STR:DIR(@101)
        STR:APER 0.1
        STR:APER?
    Returns:+1.00000000E-01
```

[SENSe:]STRain:APERture:ENABle \{OFF|ON\}[,(@<ch_list>)]
[SENSe:]STRain:APERture:ENABle? [(@<ch_list>)]
Enables the setting of integration time in seconds (called aperture time) for
strain measurements. If aperture time mode is disabled, the integration
time is set in PLC (power-line cycles).
Parameter: 0|1|OFF|ON
Return parameter: $0 \mid 1,(0=O F F, 1=O N)$
Example:
CONF:STR:DIR (@101)
STR:APER:ENAB ON
[SENSe:]STRain:EXCitation
\{<voltage>|MIN|MAX|DEF\}[,(@<ch_list>)]
[SENSe:]STRain:EXCitation? [\{(@<ch_list>)|MIN|MAX|DEF\}]
Specifies the excitation voltage applied to the bridge by an external DC voltage source. This value will be used to convert strain bridge measurements on the specified channel.

Parameter: <voltage> (1~12V); DEF: 5V
Return parameter: <NRf>
Example:
CONF:STR:DIR (@101)
STR:EXC 3
STR:EXC?
Returns: +3.00000000E+00
-The external DC voltage reference channel must be the next lowest channel than the subsequent strain channel.
[SENSe:]STRain:EXCitation:TYPE \{EXTernal|FIXed\}[,(@<ch_list>)]
[SENSe:]STRain:EXCitation:TYPE? [(@<ch_list>)]
Strain bridge conversions require the value of the external bridge excitation voltage. For this voltage, you can dedicate a multiplexer channel to measure the excitation voltage, or can specify a known fixed voltage value.

Parameter: EXTernal | FIXed
Return parameter: EXT | FIX
FIXed = the excitation voltage specified by SENSe:STRain:EXCitation will be used for the strain conversion.

EXTernal = the next-lowest channel configured for DCV measurements with reference mode enabled (see SENSe:VOLTage:DC:REFerence command) will be used as the excitation voltage reference in the strain conversion.

Example:
CONF:STR:DIR (@101)
STR:EXC:TYPE FIX
STR:EXC 3
[SENSe:]STRain:GFACtor
\{<gage_factor>|MIN|MAX|DEF\}[,(@<ch_list>)]
[SENSe:]STRain:GFACtor? [\{(@<ch_list>)|MIN|MAX|DEF\}]
Specifies the gage factor to be used to convert direct strain and strain bridge readings on the specified channel.
Gage factor is defined as the ratio of the fractional change in resistance to the fractional change in length (strain) along the axis of the edge.

Parameter: <gage_factor> (0.5 ~ 5); DEF: 2
Return parameter: <NRf>
Example:
CONF:STR:DIR (@101)
STR:GFAC 1
STR:GFAC?
Returns: $+1.00000000 \mathrm{E}+00$

- Gage factor is a dimensionless quantity. The larger the value, the more sensitive strain gage.
[SENSe:]STRain:NPLCycles \{<PLCs>|MIN|MAX|DEF\}[,(@<ch_list>)]
[SENSe:]STRain:NPLCycles? [\{(@<ch_list>)|MIN|MAX|DEF\}]
Sets or returns the integration time in number of power line cycles (PLCs) strain measurements. Where one PLC is equal to 16.6 milliseconds.

Parameter: <PLCs> $(0.0016|0.0032| 0.0042|0.0083| 0.0125|0.025| 0.05 \mid$ 0.15 | $0.6|1| 3 \mid 12) ;$ DEF: 1 PLC

Return parameter: <NRf>
Example:
CONF:STR:DIR (@101)
STR:NPLC 1
STR:NPLC?
Returns: $+1.00000000 \mathrm{E}+00$
[SENSe:]STRain:OCOMpensated \{OFF|ON\}[,(@<ch_list>)]
[SENSe:]STRain:OCOMpensated? [(@<ch_list>)]
Enables or disables offset compensation for strain measurements.
Parameter: 0|1|OFF|ON
Return parameter: $0 \mid 1,(0=O F F, 1=O N)$
Example:
CONF:STR:DIR (@101)
STR:OCOM ON

- Applies only to resistance measurements on the 100Ω through $100 \mathrm{k} \Omega$ ranges.
[SENSe:]STRain:POISson
\{<poisson_ratio>|MIN|MAX|DEF\}[,(@<ch_list>)]
[SENSe:]STRainPOISson? [\{(@<ch_list>)|MIN|MAX|DEF\}]
This command sets the poisson ratio to be used to convert strain bridge readings on the specified channels.
Poisson ratio is defined as the negative ratio of the strain the transverse direction to the strain the longitudinal direction.

Parameter: <poisson_ratio> (-0.9999 ~ 0.5); DEF: 0.3
Return parameter: <NRf>
Example:
CONF:STR:DIR (@101)
STR:POIS 1
STR:POIS?
Returns: $+1.00000000 \mathrm{E}+00$
[SENSe:]STRain:RESistance
\{<gage_ohm>|MIN|MAX|DEF\}[,(@<ch_list>)]
[SENSe:]STRain:RESistance? [\{(@<ch_list>)|MIN|MAX|DEF\}]
This command specifies the gage ohm value to be used to convert direct strain measurements on the specified channel.

Parameter: <gage_ohm> (80~1100); DEF: 120Ω
Return parameter: <NRf>

Example:
CONF:STR:DIR (@101)
STR:RES 100
STR:RES?
Returns: $+1.00000000 \mathrm{E}+02$
[SENSe:]STRain:UNSTrained
\{<offset>|MIN|MAX|DEF\}[,(@<ch_list>)]
[SENSe:]STRain:UNSTrained? [\{(@<ch_list>)|MIN|MAX|DEF\}]
This command specifies the unstrained bridge offset (can be either voltage or resistance) that will be subtracted from the strain bridge measurements before the strain conversion is performed strain bridge measurements.

Parameter: <offset> (-90~90); DEF: 0
Return parameter: <NRf>
Example:
CONF:STR:DIR (@101)
STR:UNST 10
STR:UNST?
Returns: $+1.00000000 \mathrm{E}+01$
[SENSe:]STRain:UNSTrained:IMMediate [(@<ch_list>)]
This command immediately measures and stores the bridge offset voltages on the specified channel.

Parameter: [None]
Example:
CONF:STR:QUAR (@101)
STR:UNST:IMM
STR:UNST?
Returns: -9.055960E-05
[SENSe:]STRain:VOLTage:RANGe
\{<range>|MIN|MAX|DEF\}[,(@<ch_list>)]
[SENSe:]STRain:VOLTage:RANGe? [\{(@<ch_list>)|MIN|MAX|DEF\}]
Selects a fixed range for strain measurements.
Parameter:
<range> ($100 \mathrm{mV}|1 \mathrm{~V}| 10 \mathrm{~V}|100 \mathrm{~V}| 600 \mathrm{~V}$); DEF: 100 mV
Return parameter: <NRf>
Example:
CONF:STR:QUAR (@101)
STR:VOLT:RANG 10
Returns: $+1.00000000 \mathrm{E}+01$
[SENSe:]STRain:VOLTage:RANGe:AUTO \{OFF|ON\}[,(@<ch_list>)]
[SENSe:]STRain:VOLTage:RANGe:AUTO? [(@<ch_list>)]
Enables or disables autoranging for strain measurements.
Parameter: 0|1|OFF|ON
Return parameter: $0 \mid 1,(0=O F F, 1=O N)$
Example:
CONF:STR:QUAR (@101)
STR:VOLT:RANG:AUTO ON

- Autorange thresholds:

Down range at: < 10\% of range
Up range at: > 120\% of range
[SENSe:]STRain:ZERO:AUTO \{OFF|ON\}[,(@<ch_list>)]
[SENSe:]STRain:ZERO:AUTO? [(@<ch_list>)]
Enables or disables the autozero mode for strain measurements.
Parameter: 0|1|OFF|ON
Return parameter: $0 \mid 1,(0=O F F, 1=O N)$
Example:
CONF:STR:DIR (@101)
STR:ZERO:AUTO ON

SENSe TEMPerature Commands

[SENSe:]TEMPerature:APERture
\{<seconds>|MIN|MAX|DEF\}[,(@<ch_list>)]
[SENSe:]TEMPerature:APERture? [\{(@<ch_list>)|MIN|MAX|DEF\}]
Enables the aperture mode and sets the integration time in seconds (called aperture time) for temperature measurements.

Parameter: <seconds> (20 $\mu \mathrm{s}$ ~ 1s); DEF: 100ms
Return parameter: <NRf>
Example:
CONF:TEMP TC,(@101)
TEMP:APER 0.5
TEMP:APER?
Returns: +5.00000000E-01
[SENSe:]TEM Perature:APERture:ENABle \{OFF|ON\}[,(@<ch_list>)]
[SENSe:]TEMPerature:APERture:ENABle? [(@<ch_list>)]
Enables the setting of integration time in seconds (called aperture time) for temperature measurements. If aperture time mode is disabled, the integration time is set in PLC (power-line cycles).

Parameter: 0| 1 |OFF|ON
Return parameter: $0 \mid 1,(0=O F F, 1=O N)$
Example:
CONF:TEMP TC,(@101) TEMP:APER:ENAB ON
[SENSe:]TEM Perature:NPLCycles
\{<PLCs>|MIN|MAX|DEF\}[,(@<ch_list>)]
[SENSe:]TEM Perature:NPLCycles? [\{(@<ch_list>)|MIN|MAX|DEF\}]
Sets or returns the integration time in number of power line cycles (PLCs) temperature measurements. Where one PLC is equal to 16.6 milliseconds.

Parameter: <PLCs> $(0.0016|0.0032| 0.0042|0.0083| 0.0125|0.025| 0.05 \mid$
0.15 | $0.6|1| 3 \mid 12$); DEF: 1 PLC

Return parameter: <NRf>
Example:
CONF:TEMPTC, (@101)
TEMP:NPLC 3
TEMP:NPLC?
Returns: $+3.00000000 \mathrm{E}+00$
[SENSe:]TEMPerature:RJUNction? [(@<ch_list>)]
Returns the internal reference junction temperature on the specified channels in degrees Celsius, regardless of the temperature units currently selected. This is useful only for an internal reference source.

Parameter: [None]
Return parameter: <NRf>
Example:
CONF:TEMP TC,(@101)
TEMP:RJUN?
Returns: $+2.76800914 \mathrm{E}+01$
[SENSe:]TEMPerature:RJUNction:SIMulated:AUTO:OFFSet \{<temperature>|MIN|MAX|DEF\}[,(@<ch_list>)]
[SENSe:]TEMPerature:RJUNction:SIMulated:AUTO:OFFSet?
[\{(@<ch_list>)|MIN|MAX|DEF $\}$]
Sets or returns junction reference temperature adjust value of thermocouple measurement which internal temperature is selected.

Parameter: <temperature> (-20.00~20.00); DEF:0
Return parameter: <NRfs, where unit $={ }^{\circ} \mathrm{C}$
Example:
CONF:TEMPTC,(@101)
TEMP:RJUN:SIM:AUTO:OFFS 10
TEMP:RJUN:SIM:AUTO:OFFS?
Returns: +1.00000000E+01
[SENSe:]TEMPerature:TRANsducer:\{RTD|FRTD\}:TYPE
<sensor_type>[,(@<ch_list>)]
[SENSe:]TEMPerature:TRANsducer:\{RTD|FRTD\}:TYPE?
[(@<ch_list>)]
Selects the 2-wire and 4-wire RTD sensor type.
parameter: <sensor_type> (PT100 | D100 | F100 | PT385 | PT3916 | USER)
Return parameter: PT100 | D100 | F100 | PT385 | PT3916 | USER
Example:
TEMP:TRAN:RTD:TYPE PT100
[SENSe:]TEMPerature:TRANsducer:\{RTD|FRTD\}:USER:ALPHa \{<coefficient>|MIN|MAX|DEF\}[,(@<ch_list>)]
[SENSe:]TEMPerature:TRANsducer:\{RTD|FRTD\}:USER:ALPHa?
[\{(@<ch_list>)|MIN|MAX|DEF\}]
Sets or returns the 2-wire and 4-wire RTD alpha coefficient.
Parameter: <coefficient> (0.0~9.999999); DEF: 0
Return parameter: <NRf>
Example:
TEMP:TRAN:RTD:USER:ALPH 0.00385
[SENSe:]TEM Perature:TRANsducer:\{RTD|FRTD\}:USER:BETA \{<coefficient>|MIN|MAX|DEF\}[,(@<ch_list>)]
[SENSe:]TEM Perature:TRANsducer:\{RTD|FRTD\}:USER:BETA?
[\{(@<ch_list>)|MIN|MAX|DEF\}]
Sets or returns the 2-wire and 4-wire RTD beta coefficient.
Parameter: <coefficient> (0.0~9.999999); DEF: 0
Return parameter: <NRf>
Example:
TEMP:TRAN:RTD:USER:BETA 0.10863

```
[SENSe:]TEM Perature:TRANsducer:{RTD|FRTD}:USER:DELTa
{<coefficient>|MIN|MAX|DEF}[,(@<ch_list>)]
[SENSe:]TEMPerature:TRANsducer:{RTD|FRTD}:USER:DELTa?
[{(@<ch_list>)|MIN|MAX|DEF}]
    Sets or returns the 2-wire and 4-wire RTD delta coefficient.
    Parameter: <coefficient> (0.0~9.999999); DEF: 0
    Return parameter: <NRf>
    Example:
            TEMP:TRAN:RTD:USER:DELT 1.4999
```

[SENSe:]TEM Perature:TRANsducer:\{RTD|FRTD\}:OCOMpensated \{OFF|ON\}[,(@<ch_list>)]
[SENSe:]TEM Perature:TRANsducer:\{RTD|FRTD\}:OCOM pensated? [(@<ch_list>)]

Enables or disables offset compensation for temperature measurements.
Parameter: 0|1|OFF|ON
Return parameter: $0 \mid 1,(0=O F F, 1=O N)$
Example:
CONF:TEMP RTD,(@101)
TEMP:TRAN:RTD:OCOM ON
-This command applies only to 2-wire and 4-wire RTD measurements on the $100 \Omega, 1 \mathrm{k} \Omega$, and $10 \mathrm{k} \Omega$ ranges. Once enabled, offset compensation is applied to both 2-wire and 4-wire RTD measurements on the specified channels.

- Applies only to resistance measurements on the 100Ω through $100 \mathrm{k} \Omega$ ranges.
[SENSe:]TEMPerature:TRANsducer:\{RTD|FRTD\}:POWer:LIMit[:STAT e] \{OFF|ON\}[,(@<ch_list>)]
[SENSe:]TEMPerature:TRANsducer:\{RTD|FRTD\}:POWer:LIMit[:STAT e]? [(@<ch_list>)]

Enables or disables low-power for 2-wire and 4-wire RTD measurements.
Parameter: $0|1| O F F \mid O N$
Return parameter: $0 \mid 1,(0=O F F, 1=O N)$
Example:
CONF:TEMP RTD,(@101)
TEMP:TRAN:RTD:POW:LIM ON

- Low-power resistance measurements apply to the 100Ω through $100 \mathrm{k} \Omega$ ranges only. The $1 \mathrm{M} \Omega$ through $1 \mathrm{G} \Omega$ ranges source the same current regardless of the low-power setting.
[SENSe:]TEMPerature:TRANsducer:\{RTD|FRTD\}:REFerence \{OFF|ON\}[,(@<ch_list>)]
[SENSe:]TEMPerature:TRANsducer:\{RTD|FRTD\}:REFerence?
[(@<ch_list>)]
Enables (On) or disables (Off) the specified 2-wire and 4-wire RTD channels to be used as the reference channel for subsequent thermocouple measurements that specify an external reference source.

Parameter: 0|1|OFF|ON
Return parameter: $0 \mid 1,(0=O F F, 1=O N)$
Example:
CONF:TEMP RTD,(@101)
TEMP:TRAN:RTD:REF ON
[SENSe:]TEM Perature:TRANsducer:\{RTD|FRTD\}:RESistance[:REFere nce] $\{<$ resistance>|MIN|MAX|DEF\}[,(@<ch_list>)]
[SENSe:]TEMPerature:TRANsducer:\{RTD|FRTD\}:RESistance[:REFere nce]? [\{(@<ch_list>)|MIN|MAX|DEF\}]

Selects the nominal resistance (RO) for 2-wire and 4-wire RTD measurements. RO is the nominal resistance of an RTD at $0^{\circ} \mathrm{C}$.

Parameter: <resistance> (100~1000 $) \pm 20 \%$); DEF: 100Ω
Return parameter: <NRf>
Example:
CONF:TEMP RTD,(@101)
TEMP:TRAN:RTD:RES 1000
TEMP:TRAN:RTD:RES?
Returns: $+1.00000000 \mathrm{E}+03$
[SENSe:]TEM Perature:TRANsducer:\{THERmistor|FTHermistor\}:PO Wer:LIMit[:STATe] \{OFF|ON\}[,(@<ch_list>)]
[SENSe:]TEMPerature:TRANsducer:\{THERmistor|FTHermistor\}:PO Wer:LIMit[:STATe]? [(@<ch_list>)]

Enables or disables low-power for 2-wire and 4-wire thermistor measurements.

Parameter: 0|1|OFF|ON
Return parameter: $0 \mid 1,(0=O F F, 1=O N)$
Example:
CONF:TEMP THER,(@101)
TEMP:TRAN:THER:POW:LIM ON

- Low-power resistance measurements apply to the 100Ω through $100 \mathrm{k} \Omega$ ranges only. The $1 \mathrm{M} \Omega$ through $1 \mathrm{G} \Omega$ ranges source the same current regardless of the low-power setting.
[SENSe:]TEMPerature:TRANsducer:\{THERmistor|FTHermistor\}:REF erence \{OFF|ON\}[,(@<ch_list>)]
[SENSe:]TEMPerature:TRANsducer:\{THERmistor|FTHermistor\}:REF erence? [(@<ch_list>)]

Enables (On) or disables (Off) the specified 2-wire and 4 -wire thermistor channels to be used as the reference channel for subsequent thermocouple measurements that specify an external reference source.

Parameter: 0|1|OFF|ON
Return parameter: $0 \mid 1,(0=O F F, 1=O N)$
Example:
CONF:TEMP THER,(@101) TEMP:TRAN:THER:REF ON
[SENSe:]TEMPerature:TRANsducer:\{THERmistor|FTHermistor\}:TYP E \{<sensor_type>|MIN|MAX|DEF\}[,(@<ch_list>)]
[SENSe:]TEMPerature:TRANsducer:\{THERmistor|FTHermistor\}:TYP E? [\{(@<ch_list>)|MIN|MAX|DEF\}]

Sets or returns the 2-wire and 4-wire thermistor sensor type.
Parameter: <sensor_type> ($2.2 \mathrm{k} \Omega|5 \mathrm{k} \Omega| 10 \mathrm{k} \Omega \mid$ USER $)$; DEF: $5 \mathrm{k} \Omega$ Return parameter: $+2000|+5000|+10000 \mid$ USER

Example:
TEMP:TRAN:THER:TYPE 2200
[SENSe:]TEMPerature:TRANsducer:\{THERmistor|FTHermistor\}:USE R:AVALue \{<coefficient>|MIN|MAX|DEF\}[,(@<ch_list>)]
[SENSe:]TEMPerature:TRANsducer:\{THERmistor|FTHermistor\}:USE R:AVALue? [\{(@<ch_list>)|MIN|MAX|DEF\}]

Sets or returns the 2-wire and 4-wire thermistor a coefficient.
Parameter: <coefficient> (0.0~9.9999); DEF: 0
Return parameter: <NRf>
Example:
TEMP:TRAN:FTH :USER:AVAL 0.002154
[SENSe:]TEM Perature:TRANsducer:\{THERmistor|FTHermistor\}:USE R:BVALue \{<coefficient>|MIN|MAX|DEF\}[,(@<ch_list>)]
[SENSe:]TEM Perature:TRANsducer:\{THERmistor|FTHermistor\}:USE R:BVALue? [\{(@<ch_list>)|MIN|MAX|DEF\}]

Sets or returns the 2-wire and 4-wire thermistor b coefficient.
Parameter: <coefficient> (0.0~9.9999); DEF: 0
Return parameter: <NRf>
Example:
TEMP:TRAN:FTH :USER:BVAL 0.003425
[SENSe:]TEMPerature:TRANsducer:\{THERmistor|FTHermistor\}:USE R:CVALue \{<coefficient>|MIN|MAX|DEF\}[,(@<ch_list>)]
[SENSe:]TEM Perature:TRANsducer:\{THERmistor|FTHermistor\}:USE R:CVALue? [\{(@<ch_list>)|MIN|MAX|DEF\}]

Sets or returns the 2-wire and 4-wire thermistor c coefficient.
Parameter: <coefficient> (0.0~9.9999); DEF: 0
Return parameter: <NRf>
Example:
TEMP:TRAN:FTH:USER:CVAL 0.006993
[SENSe:]TEM Perature:TRANsducer:TCouple:CHECk
\{OFF|ON\}[,(@<ch_list>)]
[SENSe:]TEM Perature:TRANsducer:TCouple:CHECk? [(@<ch_list>)]
Enables or disables the thermocouple check feature to verify that your thermocouples are properly connected for measurements. When enabled, the instrument measures the resistance after each thermocouple measurement to ensure a proper connection. If an open connection is detected (greater than $5 \mathrm{k} \Omega$ on the $10 \mathrm{k} \Omega$ range), the instrument reports an overload condition.

Parameter: 0|1|OFF|ON
Return parameter: $0 \mid 1,(0=O F F, 1=O N)$
Example:
CONF:TEMP TC,(@101)
TEMP:TRAN:TC:CHEC ON
[SENSe:]TEMPerature:TRANsducer:TCouple:RJUNction \{<temperature>|MIN|MAX|DEF\}[,(@<ch_list>)]
[SENSe:]TEMPerature:TRANsducer:TCouple:RJUNction?
[\{(@<ch_list>)|MIN|MAX|DEF\}]
Sets the fixed reference junction temperature in degrees Celsius (${ }^{\circ} \mathrm{C}$) for thermocouple measurements on the specified channels.

Parameter: <temperature> (-20~+80); DEF: 0
Return parameter: <NRf>
Example:
CONF:TEMPTC,(@101)
TEMP:TRAN:TC:RJUN 25
Returns: $+2.50000000 \mathrm{E}+01$

- For this command, you must always specify the temperature in degrees Celsius regardless of the temperature units currently selected (see UNIT:TEMPerature command).
[SENSe:]TEMPerature:TRANsducer:TCouple:RJUNction:TYPE <reference>[,(@<ch_list>)]
[SENSe:]TEMPerature:TRANsducer:TCouple:RJUNction:TYPE?
[(@<ch_list>)]
Selects the reference junction source for thermocouple measurements on the specified channels.

Parameter: <reference> (INTernal|EXTeranl| FIXed)
Return parameter: INT | EXT | FIX
Example:
CONF :TEMP TC,(@101)
TEMP:TRAN:TC:RJUN:TYPE INT
[SENSe:]TEMPerature:TRANsducer:TCouple:TYPE
<sensor_type>[,(@<ch_list>)]
[SENSe:]TEMPerature:TRANsducer:TCouple:TYPE? [(@<ch_list>)]
Sets or returns the thermocouple sensor type.
Parameter: <sensor_type> (J|K|N|R|S|T|B|E)
Return parameter: J|K|N|R|S|T|B|E
Example:
TEMP:TRAN:TC:TYPE J
[SENSe:]TEM Perature:TRANsducer:TYPE
<probe_type>[,(@<ch_list>)]
[SENSe:]TEMPerature:TRANsducer:TYPE? [(@<ch_list>)]
Selects the transducer probe type to use for temperature measurements.
Parameter: TCouple | RTD | FRTD | THERmistor | FTHermistor
Return parameter: TC | RTD | FRTD | THER | FTH
Example:
TEMP:TRAN:TYPE TC
[SENSe:]TEMPerature:ZERO:AUTO \{OFF|ON\}[,(@<ch_list>)]
[SENSe:]TEMPerature:ZERO:AUTO? [(@<ch_list>)]
Enables or disables the autozero mode for temperature measurements.
Parameter: 0| 1 |OFF|ON
Return parameter: $0 \mid 1,(0=O F F, 1=O N)$
Example:
CONF:TEMP TC,(@101)
TEMP:ZERO:AUTO ON

SENSe VOLTage Commands

[SENSe:]VOLTage:AC:BANDwidth
\{<freq>|MIN|MAX|DEF\}[,(@<ch_list>)]
[SENSe:]VOLTage:AC:BANDwidth? [\{(@<ch_list>)|MIN|MAX|DEF\}]
Sets or returns the bandwidth for AC voltage measurements.
Parameter: <freq> (3 | 20 | 200Hz) ; DEF: 20Hz
Return parameter: <NRf>
Example:
CONF:AC (@101)
VOLT:AC:BAND 20
VOLT:AC:BAND?
Returns: $+2.00000000 \mathrm{E}+01$
[SENSe:]VOLTage:\{AC|DC\}:RANGe
\{<range>|MIN|MAX|DEF\}[,(@<ch_list>)]
[SENSe:]VOLTage:\{AC|DC\}:RANGe? [\{(@<ch_list>)|MIN|MAX|DEF\}] Selects a fixed range for $A C$ and $D C$ voltage measurements.

Parameter:
<range>:
AC: ($100 \mathrm{mV}|1 \mathrm{~V}| 10 \mathrm{~V}|100 \mathrm{~V}| 400 \mathrm{~V}$); DEF: AUTO
DC: $(100 \mathrm{mV}|1 \mathrm{~V}| 10 \mathrm{~V}|100 \mathrm{~V}| 600 \mathrm{~V})$; DEF: AUTO
Return parameter: <NRf>
Example:
CONF:AC (@101)
VOLT:AC:RANG 100
Returns: $+1.00000000 \mathrm{E}+02$
[SENSe:]VOLTage:\{AC|DC\}:RANGe:AUTO \{OFF|ON\}[,(@<ch_list>)]
[SENSe:]VOLTage:\{AC|DC\}:RANGe:AUTO? [(@<ch_list>)]
Enables or disables autoranging for AC and DC voltage measurements.
Parameter: $0|1|$ OFF |ON
Return parameter: $0 \mid 1,(0=O F F, 1=O N)$
Example:
CONF:DC (@101)
VOLT:DC:RANG:AUTO ON

- Autorange thresholds:

Down range at: < 10% of range
Up range at: > 120\% of range
[SENSe:]VOLTage[:DC]:APERture
\{<seconds>|MIN|MAX|DEF\}[,(@<ch_list>)]
[SENSe:]VOLTage[:DC]:APERture? [\{(@<ch_list>)|MIN|MAX|DEF\}]
Enables the aperture mode and sets the integration time in seconds (called aperture time) for DC voltage measurements.

Parameter: <seconds> (20 $\mu \mathrm{s} \sim 1 \mathrm{~s})$; DEF: 100 ms
Return parameter: <NRf>
Example:
CONF:DC (@101)
VOLT:APER 0.1
VOLT:APER ?
Returns: $+1.00000000 \mathrm{E}-01$
[SENSe:]VOLTage[:DC]:APERture:ENABle \{OFF|ON\}[,(@<ch_list>)]
[SENSe:]VOLTage[:DC]:APERture:ENABle? [(@<ch_list>)]
Enables the setting of integration time in seconds (called aperture time) for DC voltage measurements. If aperture time mode is disabled, the integration time is set in PLC (power-line cycles).

Parameter: 0|1|OFF|ON
Return parameter: $0 \mid 1,(0=O F F, 1=O N)$

Example:
CONF:DC (@101)
VOLT:APER:ENAB ON
[SENSe:]VOLTage[:DC]:IMPedance:AUTO \{OFF|ON\}[,(@<ch_list>)]
[SENSe:]VOLTage[:DC]:IMPedance:AUTO? [(@<ch_list>)]
Enables or disables automatic input impedance mode for DC voltage measurements.

Parameter: 0|1|OFF|ON
Return parameter: $0 \mid 1,(0=O F F, 1=O N)$
OFF:
The input impedance for DC voltage measurements is fixed at $10 \mathrm{M} \Omega$ for all ranges to minimize noise pickup.

ON:
The input impedance for DC voltage measurements varies by range. It is set to "HI-Z" (>10 G Ω) for the $100 \mathrm{mV}, 1 \mathrm{~V}$, and 10 V ranges to reduce the effects of measurement loading errors on these lower ranges. The 100 V and 300 V ranges remain at a $10 \mathrm{M} \Omega$ input impedance.

Example:
CONF:DC (@101)
VOLT:DC:IMP:AUTO ON
[SENSe:]VOLTage[:DC]:NPLCycles
\{<PLCs>|MIN|MAX|DEF\}[,(@<ch_list>)]
[SENSe:]VOLTage[:DC]:NPLCycles? [\{(@<ch_list>)|MIN|MAX|DEF\}]
Sets or returns the integration time in number of power line cycles (PLCs) DC voltage measurements. Where one PLC is equal to 16.6 milliseconds.

Parameter: <PLCs> $(0.0016|0.0032| 0.0042|0.0083| 0.0125|0.025| 0.05 \mid$ $0.15|0.6| 1|3| 12)$; DEF: 1 PLC
Return parameter: <NRf>
Example:
CONF:DC (@101)
VOLT:NPLC 1
VOLT:NPLC?
Returns: $+1.00000000 \mathrm{E}+00$
[SENSe:]VOLTage[:DC]:REFerence \{OFF|ON\}[,(@<ch_list>)]
[SENSe:]VOLTage[:DC]:REFerence? [(@<ch_list>)]
Enables (On) or disables (Off) the specified DC voltage channels to be used as the reference channel for subsequent strain bridge measurements that specify an external excitation reference voltage source (see [SENSe:]STRain:EXCitation:TYPE command).

Parameter: 0| 1 |OFF|ON
Return parameter: $0 \mid 1,(0=O F F, 1=O N)$
Example:
CONF:DC (@101)
VOLT:REF ON
-The external DC voltage reference channel must be one channel lower than the subsequent strain channel.
[SENSe:]VOLTage[:DC]:ZERO:AUTO \{OFF|ON\}[,(@<ch_list>)]
[SENSe:]VOLTage[:DC]:ZERO:AUTO? [(@<ch_list>)]
Enables or disables the autozero mode for DC voltage measurements.
Parameter: 0|1|OFF|ON
Return parameter: $0 \mid 1,(0=O F F, 1=O N)$
Example:
CONF:DC (@101)
VOLT:ZERO:AUTO ON

STATus Report Commands

STATus:ALARm:CONDition?
Returns the total number of the Alarm Condition register.
Return parameter: <NR1> (0~32767)
Example:
STAT:ALAR:COND?
Returns: +16

- A condition register continuously monitors the state of the instrument.

Condition register bits are updated in real time; they are neither latched nor buffered.
-This register is read-only; bits are not cleared when read.
STATus:ALARm:ENABle <enable>
STATus:ALARm:ENABle?
Sets or returns bits in the Alarm Enable register.
Parameter: <enable> (0 ~ 32767)
Return parameter: <NR1>
Example:
STAT:ALAR:ENAB 7
-The selected bits are then reported to the Status Byte. An enable register defines which bits in the event register will be reported to the Status Byte register group. You can write to or read from an enable register.

STATus:ALARm[:EVENt]?
Returns the total number of the Alarm Event register.
Return parameter: <NR1>
Example:
STAT:ALAR:EVEN?
Returns: +7

- An event register is a read-only register that latches events from the condition register. While an event bit is set, subsequent events corresponding to that bit are ignored.
- Once a bit is set, it remains set until cleared by reading the event register or by sending *CLS (clear status). This register is read-only; bits are not cleared when read.

STATus:OPERation:CONDition?

Returns the total number of the Operation Condition register.
Return parameter: <NR1> (0~32767)
Example:
STAT:OPER:COND?
Returns: +4096

- A condition register continuously monitors the state of the instrument. Condition register bits are updated in real time; they are neither latched nor buffered.
-This register is read-only; bits are not cleared when read.
STATus:OPERation:ENABle <enable>
STATus:OPERation:ENABle?
Sets or returns bits in the Operation Enable register.
Parameter: <enable> (0 ~ 32767)
Return parameter: <NR1>
Example:
STAT:OPER:ENAB 10
-The selected bits are then reported to the Status Byte. An enable register defines which bits in the event register will be reported to the Status Byte register group. You can write to or read from an enable register.

STATus:OPERation[:EVENt]?

Returns the total number of the Operation Event register.
Return parameter: <NR1>
Example:
STAT:OPER:EVEN?
Returns: +786

- An event register is a read-only register that latches events from the condition register. While an event bit is set, subsequent events corresponding to that bit are ignored.
- Once a bit is set, it remains set until cleared by reading the event register or by sending *CLS (clear status).

STATus:PRESet

Clears all enable register bits in Alarm Register, Standard Operation Register, and Questionable Data Register.

Parameter: [None]
Example:
STAT:PRES
STATus:QUEStionable:CONDition?
Returns the total number of the Questionable Condition register.
Return parameter: <NRI> (0 ~ 32767)
Example:
STAT:QUES:COND?
Returns: +2

- A condition register continuously monitors the state of the instrument. Condition register bits are updated in real time; they are neither latched nor buffered.

STATus:QUEStionable:ENABle <enable>
STATus:QUEStionable:ENABle?
Sets or returns bits in the Ouestionable Enable register.
Parameter: <enable> ($0 \sim 32767$)
Return parameter: <NR1>
Example:
STAT:QUES:ENAB 4099
-The selected bits are then reported to the Status Byte. An enable register defines which bits in the event register will be reported to the Status Byte register group. You can write to or read from an enable register.
-The selected bits are then reported to the Status Byte. An enable register defines which bits in the event register will be reported to the Status Byte register group. You can write to or read from an enable register.

- A STATus:PRESet clears all bits in the enable register.
-The $*$ PSC command controls whether the enable register is cleared at power on.

STATus:QUEStionable[:EVENt]?
Returns the total number of the Ouestionable Event register.
Return parameter: <NR1>
Example:
STAT:QUES:EVEN?
Returns: +6

- An event register is a read-only register that latches events from the condition register. While an event bit is set, subsequent events corresponding to that bit are ignored.
- Once a bit is set, it remains set until cleared by reading the event register or by sending *CLS (clear status).

SYSTem Related Commands

SYSTem:ACALibration? \{<slot>|DMM|ALL\}
Returns the autocalibration state in either a specified multifunction module slot, a specified digitizer module slot,the internal DMM, or all.

Parameter:
<slot> $=(1|2| 3)$, any slot number with DAQM907A multifunction or DAQM909A digitizer module installed.
DMM = Internal DMM
ALL = All three autocalibration state of Internal DMM, slot of DAQM907A multifunction module and slot of DAQM909A digitizer module. Return parameter: $+0 \mid+1$

SYSTem:ACALibration:DATE? \{<slot>|DMM\}
Returns the autocalibration state in either a specified multifunction module slot, a specified digitizer module slot,the internal DMM, or all.

Parameter:
<slot> = (1 | 2 | 3), any slot number with DAQM907A multifunction or DAQM909A digitizer module installed.
DMM = Internal DMM.
Return parameter: <date> (yyyy,mm,dd)
Example:
SYST:ACAL:DATE? DMM
Returns: 2020,1,1
SYSTem:ACALibration:INTerval \{OFF|DAILy|WEEKly|MONThly\}
SYSTem:ACALibration:INTerval?
Disables (Off) or specifies the scheduled autocalibration interval as a daily, weekly, or monthly occurrence.

Parameter: OFF | DAILy | WEEKly | MONThly
Return parameter: OFF | DAIL | WEEK | MONT
Example:
SYST:ACAL:INT OFF

SYSTem:ACALibration:INTerval:MDAY <dayofMonth>
SYSTem:ACALibration:INTerval:MDAY?
Schedules the autocalibration to start at a specific day (day 1 to 31) of each month.

Parameter: <dayofMonth> (1~31)
Return parameter: +1 ~+31
Example:
SYST:ACAL:INT:MDAY 22
SYSTem:ACALibration:INTerval:TIME <hour>,<minute>
SYSTem:ACALibration:INTerval:TIME?
Schedules the autocalibration to start at a specific time (hour and minute).
Time is in 24 -hour format.

Parameter: <hour> (0~23); <minute> (0~59)
Return parameter: <time> (hh,mm)
Example:
SYST:ACAL:INT:TIME 2,30
SYST:ACAL:INT:TIME?
Returns: +2,+30
SYSTem:ACALibration:INTerval:WDAY <dayofWeek>
SYSTem:ACALibration:INTerval:WDAY?
Schedules the autocalibration to start at a specific day (Sunday to Saturday) of each week.

Parameter: <dayofWeek> (SUNDay | MONDay | TUESday | WEDNesday | THURsday | FRIDay | SATurday)
Return parameter: SUND | MOND | TUES | WEDN |THUR | FRID | STA
Example:
SYST:ACAL:INT:WDAY MOND

SYSTem:ACALibration:TEMPerature? \{<slot>|DMM\}

Returns the temperature of the last autocalibration in ${ }^{\circ} \mathrm{C}$.
Parameter:
<slot> $=(1|2| 3)$, any slot number with DAQM907A multifunction or DAQM909A digitizer module installed.
DMM = Internal DMM.
Return parameter: <NRf>
Example:
SYST:ACLA:TEMP? DMM
Returns: $+3.50000000 \mathrm{E}+01$
SYSTem:ACALibration:TIME? \{<slot>|DMM\}
Returns the time of the last autocalibration in the format hh,mm,ss.sss.
Parameter:
<slot> = (1 | 2 | 3), any slot number with DAQM907A multifunction or DAQM909A digitizer module installed.
DMM = Internal DMM.
Return parameter: <time> (hh,mm,ss.sss)
Example:
SYST:ACLA:TIME? DMM
Returns: 17,58,28.000

SYSTem:ALARm?

Reads the alarm data from the alarm queue. A record of up to 20 alarms can be stored in the instrument's alarm queues.

Return parameter: <info>
Example:
SYST:ALAR?
Returns: +1.12379111E-03 VDC,2021,01,28,00,43,39.218,101,0,1
$+1.12379111 \mathrm{E}-03 \mathrm{VDC}, \frac{2021,01,28,00,43,39.218,101,0,1}{2}$
1
4
56

1. Reading with units $(1.124 \mathrm{mV})$
2. Date(January 28, 2021)
3. Time of day (0:43:39.218 AM)
4. Channel number
5. Alarm limit threshold crossed ($0=$ No alarm, $1=\mathrm{LO}, 2=\mathrm{HI}$)
6. Alarm number (1-4)

- Each time you start a new scan, the instrument clears all readings (including alarm data) stored in reading memory from the previous measurement. Therefore, the contents of memory are always from the most recent scan.

SYSTem:BEEPer[:IMMediate]
Makes buzzer beep once.
Parameter: [None]
Example:
SYST:BEEP:IMM
-This function is not affected by the state of SYST:BEEP:STAT.
SYSTem:BEEPer:ERRor \{OFF|ON\}
SYSTem:BEEPer:ERRor?
Enables (On) or disables (Off) the beeper to sound on an SCPI error.
Parameter: 0|1|OFF|ON
Return parameter: $0 \mid 1,(0=O F F, 1=O N)$

Example:

SYST:BEEP:ERR ON

SYSTem:BEEPer:STATe \{OFF|ON\}

SYSTem:BEEPer:STATe?

Enables (On) or disables (Off) the beep heard during measurements, or when an error is generated from the front panel or remote interface.

Parameter: 0|1|OFF|ON
Return parameter: $0 \mid 1,(0=O F F, 1=O N)$
Example: SYST:BEEP:STAT OFF

- The key sound of front panel is not affected by the state.

SYSTem:CLICk:STATe \{OFF|ON\}

SYSTem:CLICk:STATe?

Enables (On) or disables (Off) the click heard when knob is turned or keys are pressed.

Parameter: 0|1|OFF|ON
Return parameter: $0 \mid 1,(0=O F F, 1=O N)$
Example:
SYST:CLIC:STAT OFF
SYSTem:CPON \{<slot>|ALL\}
Resets the module in the specified slot to its power-on state (CPON means
"card power on"). This opens all channels on the module.
Parameter: <slot> (1 | 2 | 3) |ALL
Example:
SYST:CPON? ALL

- If any channel is configured for a measurement, this command has no effect. If no channel is configured, this command opens all channels.

SYSTem:CTYPe? <slot>
Returns the identity of the plug-in modules in the specified slot.
Parameter: <slot> (1 | 2 | 3)
Returns parameter: <Company Name>,<Card Model Number>,<Serial
Number>,<Firmware Rev>
Example:
SYST:CTYP? 1
Returns: GWInstek,DAQ-901,DAQ123456,0.86

SYSTem:DATE <year>,<month>,<day>
SYSTem:DATE?
Sets or returns the date for the instrument's real-time clock.
Parameter: <year> (2000~2099), <month> (1~12), <day> (1~31)
Return parameter: <date> (yyyy,mm,dd)
Example:
SYST:DATE 2020,1,1
SYST:DATE?
Returns: 2020,1,1
SYSTem:ERRor?
Returns the current system error, if any.
SYSTem:LFRequency?
Returns the AC source line freqency.
Return parameter: $+50 \mid+60$
SYSTem:LOCal
Enables local control (front panel control) and disables remote control.

SYSTem:REMote

Enables remote control and disables local control (front panel control, all key are disable besides Shift key(return to local control)).

SYSTem:PARameter:LOAD <mem_num>
SYSTem:PARameter:LOAD?
Load the system parameters from 0 of 3 memory locations.
Parameter: <mem_num> ($0 \sim 3$), ($0=$ default settings, $1 \sim 3=$ memory number)
Return parameter: <NR1>, (Last = state before power-off)
Example: SYST:PAR:LOAD 0

SYSTem:PARameter:SAVE <mem_num>
Saves the system parameters into 1 of 3 memory slots.
Parameter: <mem_num> (1~3)
Example: SYST:PAR:SAVE 1

SYSTem:PERSona[:MANufacturer] "<string>"
SYSTem:PERSona[:MANufacturer]?
Sets the instrument's manufacturer ID string for backward compatibility.
Parameter: "<string>", max length 24 characters
Return parameter: "<string>"
Example:
SYST:PERS "HEWLETT-PACKARD" SYST:PERS?
Returns: "HEWLETT-PACKARD"
SYSTem:PERSona[:MANufacturer]:DEFault
SYSTem:PERSona[:MANufacturer]:DEFault?
Returns the default manufacturer's ID string.
Parameter: [None]
Return parameter: "<string>"
Example:
SYST:PERS:DEF?
Returns: "Keysight Technologies"
SYSTem:PERSona:MODel "<string>"
SYSTem:PERSona:MODel?
Sets the instrument's model number for backward compatibility.
Parameter: "<string>", max length 24 characters
Return parameter: "<string>"
Example:
SYST:PERS "34970A"
SYST:PERS?
Returns: "34970A"
SYSTem:PERSona:MODel:DEFault
SYSTem:PERSona:MODel:DEFault?
Returns the default instrument's model number.
Parameter: [None]
Return parameter: "<string>"
Example:
SYST:PERS:MODE:DEF?
Returns: "DAQ970A"

SYSTem:PRESet

Presets the instrument to a known configuration. Readings are cleared, and channels are opened.

SYSTem:RELay:CYCLes? (@<ch_list>)
Reads the cycle count on the specified channels. In addition to the channel relays, you can also query the count on the Analog Bus relays and module relays.

Return parameter: <NR1>

Example:
SYST:REL:CYCL? (@101)
Returns: +100
SYSTem:RELay:CYCLes:CLEar (@<ch_list>)
Resets the cycle count on the specified channels.

Parameter: [None]
Example:
SYST:REL:CYCL:CLE (@101)
SYSTem:RELay:CYCLes:FACTory? (@<ch_list>)
Reads the factory cycle count on the specified channels.
Return parameter: <NR1>
Example:
SYST:REL:CYCL:FACT? (@101)
Returns: +200
SYSTem:SCPi:MODE \{NORmal|COMPatible\}
SYSTem:SCPi:MODE?
Sets or returns the SCPI mode. The SCPI mode is used to determine whether the *IDN? query returns the "NORmal" or "COMPatible" identification string. See the SYSTem:IDNStr command for details.

Parameter: NORmal | COMPatible, (NOR = Normal, COMP = User-define) Return parameter: NORMAL | COMPATIBLE

Example:
SYST:SCP:MODE NOR
-The parameters will not be saved.

SYSTem:SCPi:AUTO:SAVE \{OFF|ON\}

SYSTem:SCPi:AUTO:SAVE?
Do the setting parameters need to be saved automatically for SCPI command?

Parameter: 0|1|OFF|ON
Return parameter: $0 \mid 1,(0=O F F, 1=O N)$
Example:
SYST:SCP:AUTO:SAVE ON

- Parameters auto saving generally takes some time. Hence, it is suggested to disable the function when no necessity occurs.

SYSTem:SERial?

Returns the serial number(nine characters/numbers).
Return parameter: <string>
Example: SYST:SER?
Returns: DAQ123456
SYSTem:SLOT:LABel <slot>,"<string>"
SYSTem:SLOT:LABel? <slot>
Allows you to add a custom label to the module in the specified slot.
Parameter: <slot> (1 | $2 \mid 3$); "<string>", max length 10 characters.
Return parameter: "<string>"
Example:
SYST:SLOT:LAB 1," BATTERY " SYST:SLOT:LAB? 1
Returns: "BATTERY"

- Specifying a null string ("") disables the slot label message.

SYSTem:TEM Perature?
Returns the internal temperature of machine.
Return parameter: $<$ NRf $>$, where unit $={ }^{\circ} \mathrm{C}$
Example: SYST:TEMP?
Returns: $+3.54375000 \mathrm{E}+01$

SYSTem:TIME <hour>,<minute>,<second>
SYSTem:TIME?
Sets or returns the time for the instrument's real-time clock.
Parameter: <hour> (0~23); <minute> (0~59); <second> (0~59)
Return parameter: <time> (hh,mm,ss.sss)
Example: SYST:TIME 16,20,30 SYST:TIME?
Returns: 16:20:40.000
SYSTem:TIME:SCAN?
Returns the time at the start of the scan.
Return parameter: <time> (yyyy,mm,dd,hh,mm,ss.sss)
Example:
SYST:TIME:SCAN?
Returns: 2021,09,08,20,21,22.001
SYSTem:UPTime?
Returns the amount of time that the instrument has been running since the last power-on.

Return parameter: <time> (dd,hh,mm,ss)
Example:
SYST:UPT?
Returns: +0,+1,+25,+53

- Typically used to verify that the instrument is warmed up sufficiently before calibration.

SYSTem:VERSion?
Returns the SCPI version.
Return parameter: 1994.0.

```
SYSTem:WMESsage "<string>"
SYSTem:WMESsage?
    Displays a power-on message.
    Parameter: "<string>", max length 12 characters
    Return parameter: "<string>"
    Example:
        SYST:WMES "GWINSTEK"
        SYST:WMES?
    Returns: "GWINSTEK"
```

 - Specifying a null string ("") disables the power-on message.

SYSTem COMMunication Commands

SYSTem:COMMunicate:GPIB:ADDRess <address>
SYSTem:COMMunicate:GPIB:ADDRess?
Sets or returns the GPIB address that is only on GPIB communication bus.
Parameter: <address> (0~30)
Return parameter: <NR1>
Example:
SYST:COMM:GPIB:ADDR 15
SYSTem:COMMunicate:LAN:DHCP \{OFF|ON\}
SYSTem:COM Municate:LAN:DHCP?
Enables (On) or disables (Off) the use of the Dynamic Host Configuration Protocol (DHCP) for the instrument.

Parameter: 0|1|OFF|ON
Return parameter: $0 \mid 1,(0=O F F, 1=O N)$
Example:
SYST:COMM:LAN:DHCP ON
SYSTem:COM Municate:LAN:DNS[X] "<address>"
SYSTem:COMMunicate:LAN:DNS[X]? \{CURRent|STATic\}
Sets or returns the DNS address. which $\mathrm{X}=1$ indicate DNS1, $\mathrm{X}=2$ indicate DNS2.

Parameter: "<address>"
Return parameter: "xxx.xxx.xxx.xxx"
CURRent : Returns address currently being used by the instrument.
STATic : Returns ddreess from non-volatile memory. This address is used if DHCP is disabled or unavailable.

Example:
SYST:COMM:LAN:DNS1 "172.16.1.252"
SYST:COMM:LAN:DNS1?
Returns: "172.16.1.252"

SYSTem:COMMunicate:LAN:DOMain?
Returns the current network domain name.
Return parameter: "<name>"
Example:
SYST:COMM:LAN:DOM?
Returns: "abc.com"

- If a domain name has not been assigned, a null string (" ") is returned.

SYSTem:COMMunicate:LAN:GATeway "<address>"
SYSTem:COMMunicate:LAN:GATeway? \{CURRent|STATic\}
Sets or returns the Gateway address.
Parameter: "<address>"
Return parameter: "xxx.xxx.xxx.xxx"
CURRent : Returns address currently being used by the instrument.
STATic : Returns address from non-volatile memory. This address is used if DHCP is disabled or unavailable.

Example:
SYST:COMM:LAN:GAT "192.168.31.254"
SYST:COMM:LAN:GAT?
Returns: "172.168.31.254"
SYSTem:COMMunicate:LAN:HOSTname "<string>"
SYSTem:COMMunicate:LAN:HOSTname? \{CURRent|STATic\}
Sets or returns the hostname.
Parameter: "<string>", max length 12 characters
Return parameter: "<string>"
CURRent : Returns hostname currently being used by the instrument.
STATic : Returns hostname from non-volatile memory. This address is used if DHCP is disabled or unavailable.

Example:
SYST:COMM:LAN:HOST "DMM"

SYSTem:COMMunicate:LAN:IPADdress "<address>"
SYSTem:COMMunicate:LAN:IPADdress? \{CURRent|STATic\}
Sets or returns the IP address.
Parameter: "<address>"
Return parameter: "xxx.xxx.xxx.xxx"
CURRent : Returns address currently being used by the instrument.
STATic : Returns static address from non-volatile memory. This address is used if DHCP is disabled or unavailable.

Example:
SYST:COMM:LAN:IPAD "192.168.31.117"
SYST:COMM:LAN:IPAD?
Returns: "192.168.31.117"
SYSTem:COMMunicate:LAN:MAC?
Returns the MAC number.
Return parameter: 12 Hexadecimal characters
Example:
SYST:COMM:LAN:MAC?
Returns: "002224000090"
SYSTem:COMMunicate:LAN:SMASk "<address>"
SYSTem:COMMunicate:LAN:SMASk? \{CURRent|STATic\}
Sets or returns the subnet mask address.
Parameter: "<address>"
Return parameter: "xxx.xxx.xxx.xxx"
CURRent : Returns subnet mask currently being used by the instrument. STATic : Returns subnet mask from non-volatile memory. This address is used if DHCP is disabled or unavailable.

Example:
SYST:COMM:LAN:SMAS "255.255.255.0"
SYST:COMM:LAN:SMAS?
Returns: "255.255.255.0"

SYSTem:COMMunicate:LAN:TCP:ENABle \{OFF|ON \}
SYSTem:COMMunicate:LAN:TCP:ENABle?
Enables (On) or disables (Off) the use of the Transmission Control Protocol (TCP) for the instrument.

Parameter: 0|1|ON | OFF
Return parameter: $0 \mid 1,(0=O F F, 1=O N)$
Example:
SYST:COMM:LAN:TCP:ENAB ON
SYSTem:COMMunicate:LAN:TCP:PORT \{<port>|MIN|MAX|DEF\}
SYSTem:COMMunicate:LAN:TCP:PORT? [\{MIN|MAX|DEF\}]
Sets or returns the TCP communication port number.
Parameter: <port> (1024 ~ 65535); DEF: 3001
Return parameter: <NR1>
Example:
SYST:COMM:LAN:TCP:PORT "3001" SYST:COMM:LAN:TCP:PORT?
Returns: 3001
SYSTem:COMMunicate:LAN:TELNet:ECHO \{OFF|ON\}
SYSTem:COMMunicate:LAN:TELNet:ECHO?
Sets or returns the Telnet communication echo state.
Parameter: 0|1|ON | OFF
Return parameter: $0 \mid 1,(0=O F F, 1=O N)$
Example:
SYST:COMM:LAN:TELN:ECHO ON
SYSTem:COMMunicate:LAN:TELNet:ENABle \{OFF|ON\}
SYSTem:COM Municate:LAN:TELNet:ENABle?
Enables (On) or disables (Off) the use of the Telecommunications Network (TELNET) for the instrument.

Parameter: 0| $1 \mid$ ON | OFF
Return parameter: $0 \mid 1,(0=O F F, 1=O N)$
Example:
SYST:COMM:LAN:TELN:ENAB ON

SYSTem:COM Municate:LAN:TELNet:TIMeout <time>
SYSTem:COMMunicate:LAN:TELNet:TIMeout?
Sets or returns the Telnet communication timeout time, where unit = second.

Parameter: <time> (0~60000)
Return parameter: <NR1>
Example:
SYST:COMM:LAN:TELN:TIM 0

- Since 0 indicates infinite, Telnet communication has no timeout always.

SYSTem:COMMunicate:LAN:TELNet:PORT \{<port>|MIN|MAX|DEF\}
SYSTem:COMMunicate:LAN:TELNet:PORT? [\{MIN|MAX|DEF\}]
Sets or returns the Telnet communication port number.
Parameter: <port> (1024 ~ 65535); DEF: 3000
Return parameter: <NR1>
Example:
SYST:COMM:LAN:TELN:PORT "3000"
SYST:COMM:LAN:TELN:PORT?
Returns: 3000
SYSTem:COM Municate:LAN:TELNet:PROMpt "<string>"
SYSTem:COMMunicate:LAN:TELNet:PROMpt?
Sets or returns the telnet prompt message.
Parameter: "<string>", max length 15 characters
Return parameter: "<string>"
Example:
SYST:COMM:LAN:TELN:PROM "DAQ9600>"
SYST:COMM:LAN:TELN:PROM?
Returns: DAQ9600>

SYSTem:COMMunicate:LAN:TELNet:WMESsage "<string>"
SYSTem:COM Municate:LAN:TELNet:WMESsage?
Sets or returns the telnet welcome message that telnet communication connect success.

Parameter: "<string>", max length 63 characters
Return parameter: "<string>"
Example:
SYST:COMM:LAN:TELN:WMES "Welcome to DAQ9600 Telnet Server"
SYSTem:COMMunicate:LAN:TIMeout <time>
SYSTem:COMMunicate:LAN:TIMeout?
Sets or returns the TCP communication timeout time, where unit = second.

Parameter: <time> (1~60000)
Return parameter: <NR1>
Example:
SYST:COMM:LAN:TIM 10
SYSTem:COM Municate:LAN:UPDate
Stores any changes made to the LAN settings into non-volatile memory and restarts the LAN driver with the updated settings.

Parameter: [None]
Example:
SYST:COMM:LAN:UPD

- This command must be sent after changing the settings for DHCP, DNS, gateway, hostname, IP address, subnet, mask, or WINS.

SYSTem:COMMunicate:LAN:WEB:ENABle \{OFF|ON\}
SYSTem:COMMunicate:LAN:WEB:ENABle?
Enables (On) or disables (Off) the use of the WEB page for the instrument.
Parameter: $0|1| O N \mid O F F$
Return parameter: $0 \mid 1,(0=O F F, 1=O N)$
Example:
SYST:COMM:LAN:WEB:ENAB ON

SYSTem:COMMunicate:LAN:WINS "<address>"
SYSTem:COM Municate:LAN:WINS? \{CURRent|STATic\}
Assigns the static IP addresses of the Windows Internet Name System (WINS) servers.

Parameter: "<address>"
Return parameter: "xxx.xxx.xxx.xxx"
CURRent : Returns address currently being used by the instrument.
STATic : Returns ddreess from non-volatile memory. This address is used if DHCP is disabled or unavailable.

Example:
SYST:COMM:LAN:WINS "192.168.31.117" SYST:COMM:LAN:WINS?
Returns: "192.168.31.117"

TRIGger Commands

TRIGger:COUNt \{<count>|MIN|MAX|DEF|INFinity $\}$
TRIGger:COUN? [\{MIN|MAX|DEF\}]
Sets or returns the number of trigger counts.
Parameter: <count> (1~1,000,000); DEF: 1
Return parameter: <NRf>
Example:
CONF:VOLT:DC 10(@101,103)
ROUT:SCAN (@101,103)
TRIG:COUN 2
READ?

- For a continuous trigger (INFinity), the query returns "+9.90000000E+37".

TRIGger:SLOPe \{POSitive | NEGative\}
TRIGger:SLOPe?
Selects whether the instrument uses the rising edge (POS) or the falling edge (NEG) of the trigger signal on the rear-panel Digital I/O connector when external trigger is selected.

Parameter: POSitive | NEGative
Return parameter: POS \| NEG
Example:
TRIG:SLOP POS

TRIGger:SOURce <source>
TRIGger:SOURce?
Selects or returns current trigger source.
Parameter: <source> (IMMediate | EXTernal | BUS | TIMer |
ALARm $\{(1|2| 3 \mid 4)\}$)
Return parameter: IMM | EXT | BUS | TIM | ALAR\{(1|2|3|4)\}
IMMediate = Continuous scan trigger
EXTernal = An external TTL-compatible pulse trigger
BUS = Software trigger
TIMer = Internally paced timer trigger
ALARm $=$ Trigger on alarm 1,2,3, and 4
IMMediate:
The trigger signal is always present. When you place the instrument in the "wait-for-trigger" state, the trigger is issued immediately.
Example:
TRIG:SOUR IMM
READ?

EXTeranl:
The instrument accepts hardware triggers applied to the rear-panel Ext Trig input and takes the specified number of measurements, each time a TTL pulse specified by TRIGg:SLOP is received. If the instrument receives an external trigger before it is ready, it buffers one trigger.
Example:
TRIG:SOUR EXT
INIT
<wait external trigger in signal>
FETC ?

BUS:
The instrument is triggered by *TRG over the remote interface once the DMM is in the "wait-for-trigger" state.
Example:
TRIG:SOUR BUS
INIT
*TRG
FETC ?

- After selecting the trigger source, you must place the instrument in the "wait-for-trigger" state using the INITiate or READ? command. A trigger will not be accepted from the selected trigger source until the instrument is in the "wait-for-trigger" state.

TRIGger:TIMer \{<seconds>|MIN|MAX|DEF\}
TRIGger:TIMer? [\{MIN|MAX|DEF\}]
Sets the trigger-to-trigger interval (in seconds) for measurements on the channels in the present scan list.

Parameter: <second> (0~360,000s); DEF: 10
Return parameter: <NR1>
Example:
TRIG:SOUR TIM
TRIG:TIM: 3600

- This command defines the time from the start of one trigger to the start of the next trigger, up to the specified trigger count.
- If the scan interval is less than the time required to measure all channels in the scan list, the instrument will scan continuously, as fast as possible (no error is generated).

IEEE 488.2 Common Commands

*CLS

Clears the Event Status register (Output Queue, Operation Event Status, Questionable Event Status, Standard Event Status Register)
*ESE <enable>
*ESE?
Sets or returns the ESER (Event Status Enable Register) contents.
Parameter: <enable> (0~255)
Return parameter: <NR1>
Example:
*ESE 130
*ESE?
Returns: 130. ESER=10000010
-The selected bits are then reported to bit 5 of the Status Byte Register. An enable register defines which bits in the event register will be reported to the Status Byte register group. You can write to Or read from an enable register.
*ESR?
Returns SESR (Standard Event Status Register) contents.
Return parameter: <NR1>
Example:
*ESR?
Returns: 198. SESR=11000110

- An event register is a read-only register that latches events from the condition register. While an event bit is set, subsequent events corresponding to that bit are ignored.
- Once a bit is set, it remains set until cleared by reading the event register or by sending *CLS (clear status).
*IDN?
Returns the manufacturer, model No., serial number and system version number.

Example:
*IDN?
Returns: GWInstek,DAQ-9600,000000000,M0.93_S0.86

*OPC

*OPC?
Sets operation complete bit (bit0) in SERS (Standard Event Status Register) when all pending operations are completed.
Returns 1 to the output buffer after all pending commands complete. Other commands cannot be executed until this command completes.

Example:
CONF:VOLT:DC
TRIG:COUN 10
INIT
*OPC?
-The difference between *OPC and $* O P C$? is that*OPC sets a status bit when the operation completes, and *OPC? outputs " 1 " when the operation completes.
*PSC $\{0 \mid 1\}$
*PSC?
Clears or returns the Power On status.

Parameter: 0| 1
Return parameter: 0 | 1; ($0=$ disables, $1=$ enables)

- Enables (1) or disables (0) the clearing of certain enable registers at power on:
Questionable Data Register (STATus:OPERation:ENABle)
Standard Operation Register (STATus:QUEStionable:ENABle)
Alarm Register (STATus:ALARm:ENABle)
Status Byte Condition Register (*SRE)
Standard Event Enable Register (*ESE)
-The $*$ PSC command does not affect the clearing of the condition or event registers, just the enable registers.
*RCL <mem_num>
Load the system parameters from 0 of 3 memory locations.
Parameter: <mem_num> (0~3), (0=default settings, $1 \sim 3=$ memory number)

Example:
*RCL 1

*RST

Recalls default panel setup.

- Resets instrument to factory default state. This is similar to SYSTem:PRESet. The difference is that *RST resets the instrument for SCPI operation, and SYSTem:PRESet resets the instrument for front panel operation. As a result, *RST turns the histogram and statistics off, and SYSTem:PRESet turns them on.
*SAV <mem_num>
Save the system parameters to 1 of 3 memory locations.
Parameter: <mem_num> (1~3)
Example:
*SAV 2
*SRE <enable>
*SRE?
Sets or returns the SRER (Service Request Enable Register) contents.
Parameter: <enable> ($0 \sim 255$)
Return parameter: <NR1>
Example:
*SRE 7
*SRE?
Returns: 7. SRE=00000111
- An enable register defines which bits in the event register will be reported to the Status Byte register group. You can write to or read from an enable register.
*STB?
Returns the SBR (Status Byte Register) contents.
Return parameter: <NR1>
Example:
*STB?
Returns: 81. SBR=01010001.
- A condition register continuously monitors the state of the instrument.

Condition register bits are updated in real time; they are neither latched nor buffered.
-This register is read-only; bits are not cleared when read.
*TRG
Manually triggers the DAQ-9600 if TRIG:SOUR is selected to BUS.
Example:
TRIG:SOUR BUS
INIT
*TRG
FETC?
*TST?
Runs a standard self-test which is invoked at power-on. It will take few seconds to complete.

Return parameter: $0 \mid 1 ;(0=$ pass, $1=$ one or more tests failed $)$
Example:
*TST?
Returns: +0 .
*WAI
Configures the instrument's output buffer to wait for all pending operations to complete before executing any additional commands over the interface.

Status system

The diagram below is a description of the status system

Alarm Data

STAT:QUES:ENAB <value> STAT:QUES:ENAB?

Operation Data

NOTE:The overload bits are set once per INITiate command. If you clear an overload bit, it is not set again until a new INITiate is sent.
The following table lists the bit definitions for the Questionable Data Register:

Bit	Name	Decimal	Definition
0	Voltage Overload	1	A voltage measurement overloaded. Event only; condition register will return 0 .
1	Current Overload	2	A current measurement overloaded. Event only; condition register will return 0 .
2	Not Used	4	(Reserved for future use)
3	Not Used	8	(Reserved for future use)
4	Not Used	16	(Reserved for future use)
5	Frequency Overload / Underflow	32	A frequency or period measurement overloaded or timed out due to no signal. Event only; condition register will return 0
6	Not Used	64	(Reserved for future use)
7	Capacitance Overload	128	A capacitance measurement overloaded. Event only; condition register will return 0 .
8	Calibration Corrupt	256	At least one calibration constant is corrupt.
9	Resistance Overload	512	Only reported as event. In Conditon Register this bit always returns 0. Read the Event Register.
10	Temperature Overload	1024	A temperature measurement overloaded. Event only; condition register will return 0 .
11	Totalizer Overflow	2048	The most recent measurement failed the lower limit test.
12	Reading Memory Overflow	4096	Reading memory is full. One or more (oldest) measurements have been lost.
13	Not Used	8192	(Reserved for future use)
14	Not Used	16384	(Reserved for future use)
15	Not Used	32768	(Reserved for future use)

The following table lists the bit definitions for the Operation Data Register:

Bit	Name	Decimal	Definition
0	Calibrating	1	Instrument is performing a calibration.
1	Self Test	2	The instrument is doing a self-test.
2	Not Used	4	(Reserved for future use)

3	Not Used	8	(Reserved for future use)
4	Scanning	16	The instrument is scanning.
5	Waitig For Trigger	32	Instrument is waiting for a trigger.
6	Not Used	64	(Reserved for future use)
7	USB MSD detected	128	A USB mass storage device (USB drive) has been detected.
8	Configurtion Change	256	The instrument configuration has changed via front panel since the last INIT, READ? or MEASure?.
9	Reading Memory Threshold	512	The number of readings in memory has exceeded the memory threshold setting (DATA:POINts:EVENt:THReshold command)
10	Instrument Locked	1024	The instrument is locked (SYSTem:LOCK command)
11	Settings Changed	2048	The instrument configuration has changed via front panel or SCPI since the last INIT, READ? Or MEASure?. Event only, condition register returns 0.
12	Not Used	4096	(Reserved for future use)
13	Global Error	8192	An error is in the global error queue.
14	Not Used	16384	(Reserved for future use)
15	Not Used	32768	(Reserved for future use)

The following table lists the bit definitions for the Alarm Data Register:

Bit	Name	Decimal	Definition
0	Alarm 1	1	An event has occurred on Alarm 1. Event only; condition register will return 0.
1	Alarm 2	2	An event has occurred on Alarm 2. Event only; condition register will return 0.
2	Alarm 3	4	An event has occurred on Alarm 3. Event only; condition register will return 0.
3	Alarm 4	8	An event has occurred on Alarm 4. Event only; condition register will return 0.
4	Queue Not Empty	16	The alarm queue is not empty.
5	Queue Overflow	32	An alarm queue overflowed. Event only; condition register will return 0.
6	Alarm 1	64	Alarm 1 is triggered.
7	Alarm 2	128	Alarm 2 is triggered.
8	Alarm 3	256	Alarm 3 is triggered.

9	Alarm 4	512	Alarm 4 is triggered.
10	Not Used	1024	(Reserved for future use)
11	Not Used	2048	(Reserved for future use).
12	Lower Limit	4096	A lower limit alarm has occurred.
13	Upper Limit	8192	An upper limit alarm has occurred.
14	Not Used	16384	(Reserved for future use)
15	Not Used	32768	(Reserved for future use)

The following table describes the Standard Event Register

Bit	Name	Decimal	Definition
0	Operation Complete	1	All commands prior to and including *OPC have been executed.
1	Not Used	2	(Reserved for future use)
2	Query Error	4	The instrument tried to read the output buffer but it was empty. Or, a new command line was received before a previous query has been read. Or, both the input and output buffers are full.
3	Device Error	8	A device error, including a self-test error or calibration error, occurred (an error in the -300 range or any positive error has been generated).
4	Execution Error	16	An execution error occurred (an error in the -200 range has been generated).
5	Command Error	32	A command syntax error occurred (an error in the -100 range has been generated).
6	Not Used	64	Reserved for future use)
7	Power On	128	Power has been cycled since the last time the event register was read or cleared.

The following table describes the Status Byte Register.

Bit	Name	Decimal	Definition
0	Not Used	1	(Reserved for future use)
1	Alarm Data	2	One or more bits are set in the Alarm Enable Register. (bits must be enabled, see STATus:ALARm:ENABle command.)
2	Error Queue	4	One or more errors have been stored in the Error Queue. Use SYST:ERR? to read and delete errors.
3	Questionabl	8	One or more bits are set in the Questionable Data

	e Data		Register (bits must be enabled, see STAT:QUES:ENAB).
4	Message Available	16	Data is available in the instrument's output buffer.
5	Standard Event	32	One or more bits are set in the Standard Event Register (bits must be enabled, see *ESE).
6	64	Request Service	One or more bits are set in the Status Byte Register and may generate a Request for Service(RQS). Bits must be enabled using *SRE.
7	Operation Data	128	One or more bits are set in the Standard Operation Register (bits must be enabled, see STAT:OPER:ENAB).

Appendix

Fuse Replacement 333
Battery Replacement 334
Factory Default Parameters 336
Specifications 338
General 338
DAQ-9600 Section 339
DC Characteristics ${ }^{[1]}$ 339
AC Characteristics [1] 343
Frequency and Period Characteristics 347
Temperature Characteristics ${ }^{[1]}$ 348
Capacitance 349
Dimensions - DAQ-9600 351
Dimensions - Module 352
Declaration of Conformity 353

Fuse Replacement

Steps 1. Unplug power cord and place dual flat-blade drivers into the grooves of fuse socket sideways followed by pinching together to pull out the fuse socket.

2. The fuse socket appears. The " 240 " symbol within the hole on fuse socket indicates the line voltage is positioned as 240 V .

3. Pull the fuse holder out of the fuse socket gently as the right figure illustrates.

4. Further pull the fuse out of the fuse holder and replace it with a new fuse.

5. Restore the fuse holder with new fuse back to the fuse socket. Ensure that the correct line voltage shows within the hole of the fuse socket per requirement.

Rating Type of fuse (time-lag) Input line voltage
T0.125A, 250V, $5 \times 20 \mathrm{~mm} \quad 100 / 120 \mathrm{VAC}$

T0.125A, $250 \mathrm{~V}, 5 \times 20 \mathrm{~mm} \quad 220 / 240 \mathrm{VAC}$

Battery Replacement

Beforehand

This chapter describes the procedure of battery replacement in the front panel. Before start, it is required to let a certified and trained technician properly aware of potential risks to disassemble instrument case. Some of the electrical connections are dynamic and even available after powering off the instrument. Consequently, Do disconnect all the inputs, cords and cables before disassembling the instrument.

The steps to replace battery

1. Power off properly and disconnect all the cables including power cord and those for external
interfaces. Also, uninstall the modules from the slots of the instrument.
2. Disassemble the instrument case in light of the disassembling instructions.
3. Find the battery (CR2032) on the main board as
shown from the figure below.

4. Gently remove the battery via the end tip of flat-head screwdriver as the following figure shown.

5. Use fingers to take the battery out off the compartment with ease.

6. Dispose or recycle the used battery in accord with the applicable local regulations.
7. Place a new battery (CR2032) into the compartment and beware of the polarity $(+,-)$.
Put "+" side upwards. Gently press the battery downwards to click it into place.

8. Connect every cable and cord in need and reassemble the instrument in proper order. The procedure of battery replacement is completed.

Factory Default Parameters

Channel		(Norer)
Item List	Factory Default Parameter	Parameter Save/Load for Group 1-3
Slot1	None	\checkmark
Slot2	None	\checkmark
Slot3	None	\checkmark
Measure	Off	\checkmark
Switch	Off	\checkmark
JoinBank	Off	\checkmark
Interval		(Nore)
Item List	Factory Default Parameter	Parameter Save/Load for Group 1-3
TrigSource	Auto	\checkmark
Sweep	1	\checkmark
Sweeps INF	Off	\checkmark
Signal Out	Negative	\checkmark
Log		(wore)
Item List	Factory Default Parameter	Parameter Save/Load for Group 1-5
Log PARA	Capture	\checkmark
Filename	Default	\checkmark
Name	Time	\checkmark

Menu

Item List		Factory Default Parameter	Parameter Save/Load for Group 1-5
System	Beep	On	\checkmark
	Key Sound	On	\checkmark
	Time Sync	Open	X
Display	Brightness	60\%	\checkmark
	AutoOff	OFF	\checkmark
	AutoOff Time	30 min	\checkmark
	1ST Font Color	White	\checkmark
	Math Font Color	White	\checkmark
	Math Off Display Mode	Off	\checkmark
	Antialiasing	Off	\checkmark
	Additional Info	Open	\checkmark
	Languge	English	X
Interface	Interface	USB	X
	USB Protocol	USBCDC	X
	GPIB Address	15	X
	Identity	Default	X
Lan	DHCP	ON	X
	Web	ON	X
	Telnet	ON	X
	Telnet Port	3000	X
	Telnet Echo	ON	X
	TCP	ON	X
	TCP Port	3001	X

Only utilized parameters are listed here due to over-amount parameters. The rest of the parameters unlisted, however, can be saved and loaded as well.

It indicates parameters can be saved and loaded from the groups 1 to 5 .
It indicates the independent save zone which is free from impact of reboot.

Specifications

General

This section lists the general characteristics of the instrument.
\(\left.$$
\begin{array}{ll}\hline & \begin{array}{l}\text { - All specifications are ensured only under a single display. } \\
\text { - At least } 1 \text { hour of warm-up time is required before applying } \\
\text { these specifications. }\end{array}
$$

- MAX DC600V, AC 400 \mathrm{~V}\end{array}\right]\)	- Power Supply: $100 / 120 / 220 / 240 \mathrm{VAC} \pm 10 \%$
- Pote	
- Power Line Frequency: $50 \mathrm{~Hz} / 60 \mathrm{~Hz} \pm 10 \%$	

DAQ-9600 Section

DC Characteristics ${ }^{[1]}$

DC Voltage

	24 Hour Range			
${ }^{[2]}$	$\mathrm{TCAL} \pm 1{ }^{\circ} \mathrm{C}$	90 Day $\mathrm{TCAL} \pm 5{ }^{\circ} \mathrm{C}$	1 Year $\mathrm{TCAL} \pm 5{ }^{\circ} \mathrm{C}$	Temperature Coefficient/ $/{ }^{\circ} \mathrm{C}$
100.0000 mV	$0.0030+0.0050$	$0.0040+0.0060$	$0.0050+0.0060$	$0.0005+0.0005$
1.000000 V	$0.0020+0.0006$	$0.0035+0.0007$	$0.0048+0.0007$	$0.0005+0.0001$
10.00000 V	$0.0015+0.0004$	$0.0020+0.0005$	$0.0035+0.0005$	$0.0005+0.0001$
100.0000 V	$0.0020+0.0006$	$0.0035+0.0006$	$0.0050+0.0006$	$0.0005+0.0001$
600.000 V	$0.0025+0.0020$	$0.0040+0.0020$	$0.0050+0.0020$	$0.0005+0.0001$

Accuracy Specifications: \pm ($\%$ of reading $+\%$ of range)

Resistance ${ }^{[3]}$					
	Test	24 Hour	90 Day	1 Year	Temperature
Range ${ }^{[2]}$	Current	TCAL $\pm 1{ }^{\circ} \mathrm{C}$	TCAL $\pm 5^{\circ} \mathrm{C}$	TCAL $\pm 5^{\circ} \mathrm{C}$	Coefficient/ ${ }^{\circ} \mathrm{C}$
100.0000Ω	1 mA	$0.003+0.0030$	$0.008+0.004$	$0.010+0.004$	$0.0008+0.0005$
$1.000000 \mathrm{k} \Omega$	1 mA	$0.002+0.0005$	$0.008+0.001$	$0.010+0.001$	$0.0008+0.0001$
$10.00000 \mathrm{k} \Omega$	$100 \mu \mathrm{~A}$	$0.002+0.0005$	$0.008+0.001$	$0.010+0.001$	$0.0008+0.0001$
$100.0000 \mathrm{k} \Omega$	$10 \mu \mathrm{~A}$	$0.002+0.0005$	$0.008+0.001$	$0.010+0.001$	$0.0008+0.0001$
$1.000000 \mathrm{M} \Omega$	$5 \mu \mathrm{~A}$	$0.002+0.0010$	$0.008+0.001$	$0.010+0.001$	$0.0010+0.0002$
$10.00000 \mathrm{M} \Omega$	500 nA	$0.015+0.0010$	$0.020+0.001$	$0.040+0.001$	$0.0030+0.0004$
$100.0000 \mathrm{M} \Omega$	$\begin{aligned} & 500 \mathrm{nA} / \mathrm{l} \\ & 10 \mathrm{M} \Omega \end{aligned}$	$10.300+0.0100$	$0.800+0.010$	$0.800+0.010$	$0.1500+0.0004$
1.000000 G Ω	$\begin{aligned} & 500 \mathrm{nA} / \mathrm{l} \\ & 10 \mathrm{M} \Omega \end{aligned}$	$2.50+0.0500$	$3.50+0.0500$	$3.50+0.0500$	$1.0000+0.0040$

Accuracy Specifications: \pm (\% of reading + \% of range)

DC Current

Range ${ }^{[2]}$	Burden Voltage	$\begin{aligned} & 24 \text { Hour } \\ & \mathrm{TCAL} \pm 1^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 90 \text { Day } \\ & \mathrm{TCAL} \pm 5^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 1 \text { Year } \\ & \text { TCAL } \pm 5^{\circ} \mathrm{C} \end{aligned}$	Temperature Coefficient/ ${ }^{\circ} \mathrm{C}$
Characteristics - typical: DC current					
$1.000000 \mu \mathrm{~A}$	$<0.015 \mathrm{~V}$	$0.025+0.050$	$0.050+0.050$	$0.050+0.050$	$0.002+0.003$
$10.00000 \mu \mathrm{~A}$	$<0.15 \mathrm{~V}$	$0.020+0.010$	$0.040+0.025$	$0.050+0.025$	$0.002+0.003$
$100.0000 \mu \mathrm{~A}$	$<0.020 \mathrm{~V}$	$0.010+0.020$	$0.040+0.025$	$0.050+0.025$	$0.002+0.003$
Specifications: DC current					
1.000000 mA	$<0.20 \mathrm{~V}$	$0.007+0.006$	$0.030+0.006$	$0.050+0.006$	$0.002+0.001$
10.00000 mA	$<0.15 \mathrm{~V}$	$0.007+0.020$	$0.030+0.020$	$0.050+0.020$	$0.002+0.002$
100.0000 mA	$<0.7 \mathrm{~V}$	$0.010+0.004$	$0.030+0.005$	$0.050+0.005$	$0.002+0.001$
2.000000 A	$<0.8 \mathrm{~V}$	$0.180+0.020$	$0.200+0.020$	$0.200+0.020$	$0.005+0.001$

Continuity

	24 Hour	90 Day	1 Year	Temperature
Range $[2]$	$\mathrm{TCAL} \pm 1{ }^{\circ} \mathrm{C}$	$\mathrm{TCAL} \pm 5{ }^{\circ} \mathrm{C}$	$\mathrm{TCAL} \pm 5{ }^{\circ} \mathrm{C}$	Coefficient $/{ }^{\circ} \mathrm{C}$
$1 \mathrm{k} \Omega$	$0.002+0.030$	$0.008+0.030$	$0.01+0.03$	$0.001+0.002$
Accuracy Specifications: $\pm(\%$ of reading $+\%$ of range $)$				

Diode Test ${ }^{[4]}$

	24 Hour	90 Day	1 Year	Temperature
Range ${ }^{[2]}$	$\mathrm{TCAL} \pm 1{ }^{\circ} \mathrm{C}$	$\mathrm{TCAL} \pm 5{ }^{\circ} \mathrm{C}$	$\mathrm{TCAL} \pm 5{ }^{\circ} \mathrm{C}$	Coefficient $/{ }^{\circ} \mathrm{C}$
5 V	$0.002+0.030$	$0.008+0.030$	$0.01+0.03$	$0.001+0.002$

Measuring Characteristics

Measurement Method: Sigma-delta A/D Converter
Resistance Max. Lead 10% of range per lead for $100 \Omega, 1 \mathrm{k} \Omega$ ranges. $1 \mathrm{k} \Omega$ Resistance per lead on all other ranges.
Input Protection 600 V on all ranges
Measurement Method: Selectable 4-wire or 2-wire ohms.

DC Current	Range	Shunt	Burden Voltage
	$1 \mu \mathrm{~A}$	$10 \mathrm{k} \Omega$	<0.015 V
	$10 \mu \mathrm{~A}$	$10 \mathrm{k} \Omega$	$<0.15 \mathrm{~V}$
	$100 \mu \mathrm{~A}$	100Ω	<0.020 V
	1 mA	100Ω	<0.20 V
	10 mA	10Ω	$<0.15 \mathrm{~V}$
	100 mA	1Ω	<0.7 V
	2 A	0.1Ω	$<0.8 \mathrm{~V}$
	Input Pr	Interna	_T for 2 A

Reading Rate (Readings/sec)		Speed	Digits
	DCV	$5 / \mathrm{s}, 20 / \mathrm{s}, ~ 60 / \mathrm{s}, 100 / \mathrm{s}$	$61 / 2$
	DCI	$400 / \mathrm{s}, 1.2 \mathrm{k} / \mathrm{s}, 2.4 \mathrm{k} / \mathrm{s}$	$51 / 2$
	2W/4W-Resistance	$4.8 \mathrm{k} / \mathrm{s}, 7.5 \mathrm{k} / \mathrm{s}, 10 \mathrm{k} / \mathrm{s}$	$41 / 4$
		Speed	Digits
		60 /s	$61 / 2$
	Diode	100/s	$51 / 2$
		400 /s	$41 / 4$

[1]. DC Specification: In addition to the availability that requires warm-up of 60 minutes, it must be set in $5 / \mathrm{s}$ speed rate $(60 / \mathrm{s}$ speed rate for Continuity and Diode), A-Zero on.
[2]. The entire range of measurement will pass the set range by 20% except the tests of 600 V DC, 2 A DC and diode.
[3]. This specifications applies to 4-wire ohms function or 2-wire ohms using math null for offset. Without math null, add 2Ω additional error
in 2-wire ohms function. The 100M and 1G ohm ranges are 2-wire only.
[4]. This specification applies to the voltage measured from input terminal. 1 mA test current is the typical value. The change of current source leads to the variation in buck of diode junction.

AC Characteristics

True RMS AC Voltage [2] [3] [4]

Range ${ }^{\text {[2] }}$	Frequency	24 Hour TCAL ± 1	$\begin{gathered} 90 \text { Day } \\ -\mathrm{TCAL} \pm 5 \\ \hline \end{gathered}$	$\begin{aligned} & 1 \text { Year } \\ & =T C A L \pm{ }^{\circ} \mathrm{C} \end{aligned}$	Temperature Coefficient/ ${ }^{\circ} \mathrm{C}$
100 mV	$3 \mathrm{Hz-5} \mathrm{~Hz}$	$1.00+0.03$	$1.00+0.04$	$1.00+0.04$	$0.100+0.004$
	$5 \mathrm{~Hz}-10 \mathrm{~Hz}$	$0.35+0.03$	$0.35+0.04$	$0.35+0.04$	$0.035+0.004$
	$10 \mathrm{~Hz}-20 \mathrm{kHz}$	$0.04+0.03$	$0.05+0.04$	$0.06+0.04$	$0.005+0.003$
	$20 \mathrm{kHz}-50 \mathrm{kHz}$	$0.10+0.05$	$0.11+0.05$	$0.12+0.05$	$0.011+0.005$
	$50 \mathrm{kHz}-100 \mathrm{kHz}$	$0.55+0.08$	$0.60+0.08$	$0.60+0.08$	$0.060+0.008$
	$100 \mathrm{kHz}-300 \mathrm{kHz}$	$4.00+0.50$	$4.00+0.50$	$4.00+0.50$	$0.200+0.020$
$1 \mathrm{~V} \sim 400 \mathrm{~V}$	$3 \mathrm{~Hz}-5 \mathrm{~Hz}$	$1.00+0.02$	$1.00+0.03$	$1.00+0.03$	$0.100+0.004$
	$5 \mathrm{~Hz}-10 \mathrm{~Hz}$	$0.35+0.02$	$0.35+0.03$	$0.35+0.03$	$0.035+0.004$
	$10 \mathrm{~Hz}-20 \mathrm{kHz}$	$0.04+0.02$	$0.05+0.03$	$0.06+0.03$	$0.005+0.003$
	$20 \mathrm{kHz}-50 \mathrm{kHz}$	$0.10+0.04$	$0.11+0.05$	$0.12+0.05$	$0.011+0.005$
	$50 \mathrm{kHz}-100 \mathrm{kHz}$	$0.55+0.08$	$0.60+0.08$	$0.60+0.08$	$0.060+0.008$
	$100 \mathrm{kHz}-300 \mathrm{kHz}$	$4.00+0.50$	$4.00+0.50$	$4.00+0.50$	$0.200+0.020$

Accuracy Specifications: \pm (\% of reading + \% of range)

True RMS AC Current [2] [4] [5]

Range ${ }^{\text {[2] }}$	Burden Voltage	Frequency	$\begin{aligned} & 24 \text { Hour } \\ & \text { TCAL } \pm 1{ }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 90 \text { Day } \\ & \text { TCAL } \pm 5^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 1 \text { Year } \\ & \text { TCAL } \pm 5^{\circ} \mathrm{C} \end{aligned}$	Temperature Coefficient/ ${ }^{\circ} \mathrm{C}$
$100 \mu \mathrm{~A}$	$<0.020 \mathrm{~V}$,	$3 \mathrm{~Hz}-5 \mathrm{~Hz}$	$1.00+0.04$	$1.00+0.06$	$1.00+0.06$	$0.100+0.006$
		$5 \mathrm{~Hz}-10 \mathrm{~Hz}$	$0.35+0.04$	$0.35+0.06$	$0.35+0.06$	$0.035+0.006$
		$10 \mathrm{~Hz}-5 \mathrm{kHz}$	$0.10+0.04$	$0.10+0.06$	$0.10+0.06$	$0.015+0.006$
		$5 \mathrm{kHz}-10 \mathrm{kHz}$	$0.18+0.04$	$0.18+0.10$	$0.18+0.10$	$0.035+0.006$
1 mA	$<0.20 \mathrm{~V}$,	$3 \mathrm{~Hz}-5 \mathrm{~Hz}$	$1.00+0.04$	$1.00+0.04$	$1.00+0.04$	$0.100+0.006$
		$5 \mathrm{~Hz}-10 \mathrm{~Hz}$	$0.30+0.04$	$0.30+0.04$	$0.30+0.04$	$0.035+0.006$
		$10 \mathrm{~Hz}-5 \mathrm{kHz}$	$0.10+0.04$	$0.10+0.04$	$0.10+0.04$	$0.015+0.006$
		$5 \mathrm{kHz}-10 \mathrm{kHz}$	$0.15+0.04$	$0.15+0.04$	$0.15+0.04$	$0.030+0.006$
10 mA	$<0.15 \mathrm{~V}$	$3 \mathrm{~Hz}-5 \mathrm{~Hz}$	$1.00+0.04$	$1.00+0.04$	$1.00+0.04$	$0.100+0.006$
		$5 \mathrm{~Hz}-10 \mathrm{~Hz}$	$0.35+0.04$	$0.35+0.04$	$0.35+0.04$	$0.035+0.006$
		$10 \mathrm{~Hz}-5 \mathrm{kHz}$	$0.10+0.04$	$0.10+0.04$	$0.10+0.04$	$0.015+0.006$
		$5 \mathrm{kHz}-10 \mathrm{kHz}$	$0.18+0.04$	$0.18+0.04$	$0.18+0.04$	$0.030+0.006$
100 mA	$<0.7 \mathrm{~V}$	$3 \mathrm{~Hz}-5 \mathrm{~Hz}$	$1.00+0.04$	$1.00+0.04$	$1.00+0.04$	$0.100+0.006$
		$5 \mathrm{~Hz}-10 \mathrm{~Hz}$	$0.30+0.04$	$0.30+0.04$	$0.30+0.04$	$0.035+0.006$
		$10 \mathrm{~Hz}-5 \mathrm{kHz}$	$0.10+0.04$	$0.10+0.04$	$0.10+0.04$	$0.015+0.006$
		$5 \mathrm{kHz}-10 \mathrm{kHz}$	$0.15+0.04$	$0.15+0.04$	$0.15+0.04$	$0.030+0.006$
2 A	<0.8V	$3 \mathrm{~Hz}-5 \mathrm{~Hz}$	$1.00+0.04$	$1.00+0.04$	$1.00+0.04$	$0.100+0.006$

$5 \mathrm{~Hz}-10 \mathrm{~Hz}$	$0.35+0.04$	$0.35+0.04$	$0.35+0.04$	$0.035+0.006$
$10 \mathrm{~Hz}-5 \mathrm{kHz}$	$0.23+0.04$	$0.23+0.04$	$0.23+0.04$	$0.015+0.006$
$5 \mathrm{kHz}-10 \mathrm{kHz}$	$0.23+0.04$	$0.23+0.04$	$0.23+0.04$	$0.030+0.006$

Additional Crest Factor Errors (non-sine wave)

Crest Factor	Error (\% of reading)
$1-2$	0.05%
$2-3$	0.15%
$3-4$	0.30%
$4-5$	0.40%

Additional Low Frequency Errors (\% of reading)

	Speed Frequency				$1 / \mathrm{s}(>3 \mathrm{~Hz})$	$5 / \mathrm{s}(>20 \mathrm{~Hz})$	$20 / \mathrm{s}(>200 \mathrm{~Hz})$
$10 \mathrm{~Hz} \sim 20 \mathrm{~Hz}$	0	0.74	-				
$20 \mathrm{~Hz} \sim 40 \mathrm{~Hz}$	0	0.22	-				
$40 \mathrm{~Hz} \sim 100 \mathrm{~Hz}$	0	0.06	0.73				
$100 \mathrm{~Hz} \sim 200 \mathrm{~Hz}$	0	0.01	0.22				
$200 \mathrm{~Hz} \sim 1 \mathrm{~Hz}$	0	0	0.18				
$>1 \mathrm{k} \mathrm{Hz}$	0	0	0				

Measuring Characteristics

True RMS AC Voltage	Measurement Method:	AC-coupled True RMS - measures the ac component of input with up to 400 Vdc of bias on any range.
	Crest Factor	Maximum 5:1 at full scale
AC Bandwidth	Speed	Bandwidth
	1/s (>3 Hz)	$3 \mathrm{~Hz}-300 \mathrm{kHz}(\mathrm{ACl}: 3 \mathrm{~Hz}-10 \mathrm{kHz})$
	$5 / \mathrm{s}(>20 \mathrm{~Hz})$	$20 \mathrm{~Hz}-300 \mathrm{kHz}(\mathrm{ACl} 20 \mathrm{~Hz}-10 \mathrm{kHz})$
	$\underline{20 / s(>200 ~ H z) ~}$	$200 \mathrm{~Hz}-300 \mathrm{kHz}(\mathrm{ACl}: 200 \mathrm{~Hz}-10 \mathrm{kHz})$
	Input Impedance:	$1 \mathrm{M} \Omega \pm 2 \%$, in parallel with 100 pF
	Input Protection:	400 Vrms on all ranges
True RMS AC Current	Range	Shunt Burden Voltage
	$100 \mu \mathrm{~A}$	$100 \Omega<0.020 \mathrm{~V}$
	1 mA	$100 \Omega<0.20 \mathrm{~V}$
	10 mA	$10 \Omega \quad<0.15 \mathrm{~V}$
	100 mA	$1 \Omega \quad<0.7 \mathrm{~V}$
	2 A	$0.1 \Omega \quad<0.8 \mathrm{~V}$
	Input Protection:	Internal 2 A, 250V fuse_T for 2 A

Operating Characteristics

Function	Speed	Digits	AC Bandwidth
ACV	$\frac{1 / \mathrm{s}(>3 \mathrm{~Hz})}{5 / \mathrm{s}(>20 \mathrm{~Hz})}$	$61 / 2$	$3 \mathrm{~Hz}-300 \mathrm{kHz}$
	$\frac{1}{2}$	$20 \mathrm{~Hz}-300 \mathrm{kHz}$	
	$\left.\frac{1 / \mathrm{s}(>200 \mathrm{~Hz})}{}>3 \mathrm{~Hz}\right)$	$41 / 2$	$200 \mathrm{~Hz}-300 \mathrm{kHz}$
	$\frac{5 / \mathrm{s}(>20 \mathrm{~Hz})}{20 / \mathrm{s}(>200 \mathrm{~Hz})}$	$51 / 2$	$3 \mathrm{~Hz}-10 \mathrm{kHz}$

[1]. AC Specification: It will be available after 60 minutes of warm-up, sine wave as well as $1 / \mathrm{s}$ speed rate.
[2]. The entire range of measurement will pass the set range by 20% except the tests of 400 VAC and 2 A AC .
[3]. Specifications are for sinewave input $>5 \%$ of range. For inputs from 1% to 5% of range and $<50 \mathrm{kHz}$, add 0.1% of range additional error. For 50 kHz to 100 kHz , add 0.13% of range. The measurement range of 400 VAC is limited within the range of $7.5 \times 10^{\wedge} 7$ Volt-Hz.
[4]. Three speed settings provided for low-frequency performance: 1/s (3 $\mathrm{Hz}), 5 / \mathrm{s}(20 \mathrm{~Hz}), 20 / \mathrm{s}(200 \mathrm{~Hz})$. Additional errors will Not occur for the frequency greater than the filter settings.
[5]. Specifications are for sinewave input $>5 \%$ of range, and is beyond $10 \mu \mathrm{AAC}$. For inputs from 1% to 5% of range, add 0.1% of range additional error.

Frequency and Period Characteristics

Operating Characteristics

Function	Gate Time	Digits
Frequency,	1 s	$6 \frac{1}{2}$
Period	100 ms	$5 \frac{1}{2}$
	10 ms	$41 / 2$

[1]. This specification will be available after 60 minutes of warm-up and sine wave input, unless stated otherwise. This specification applies to 1s gate time.
[2]. This specification is available when both sine wave and square wave input $\geq 100 \mathrm{mV}$. For the input of 10 mV to 100 mV , the \% of reading error needs to be multiplied by 10 times.
[3]. The amplitude range is from 10% to 120% and is lower than 400 VAC.
[4]. The input $\geq 60 \mathrm{mV}$, for $300 \mathrm{k} \sim 1 \mathrm{MHz}$, within 100 mV range.

Temperature Characteristics

(Exclusive of probe errors)
RTD (Accuracy based on PT100):
(100 Ω platinum [PT100], D100, F100,PT385, PT3916, or user type)

			Temperature Coefficient
Range	Resolution	1 Year $\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$	$0^{\circ}-18^{\circ} \mathrm{C} \& 28^{\circ}-55^{\circ} \mathrm{C}$
$-200^{\circ} \mathrm{C} \sim-100^{\circ} \mathrm{C}$	$0.001^{\circ} \mathrm{C}$	$0.09^{\circ} \mathrm{C}$	$0.004^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
$-100^{\circ} \mathrm{C} \sim-20^{\circ} \mathrm{C}$	$0.001^{\circ} \mathrm{C}$	$0.08^{\circ} \mathrm{C}$	$0.005^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
$-20^{\circ} \mathrm{C} \sim 20^{\circ} \mathrm{C}$	$0.001^{\circ} \mathrm{C}$	$0.06^{\circ} \mathrm{C}$	$0.005^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
$20^{\circ} \mathrm{C} \sim 100^{\circ} \mathrm{C}$	$0.001^{\circ} \mathrm{C}$	$0.08^{\circ} \mathrm{C}$	$0.005^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
$100^{\circ} \mathrm{C}-300^{\circ} \mathrm{C}$	$0.001^{\circ} \mathrm{C}$	$0.122^{\circ} \mathrm{C}$	$0.007^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C} \sim 600^{\circ} \mathrm{C}$	$0.001^{\circ} \mathrm{C}$	$0.22^{\circ} \mathrm{C}$	$0.009^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$

Thermocouples (Accuracy based on ITS-90):

Type	Range	Resolution	$\begin{aligned} & 90 \text { Day/1 Year } \\ & \left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right) * \end{aligned}$	Temperature Coefficient $0^{\circ}-18^{\circ} \mathrm{C} \& 28^{\circ}-55^{\circ} \mathrm{C}$
E	-200 to $+1000^{\circ} \mathrm{C}$	$0.002{ }^{\circ} \mathrm{C}$	$0.2{ }^{\circ} \mathrm{C}$	$0.03{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
,	-210 to $+1200^{\circ} \mathrm{C}$	$0.002{ }^{\circ} \mathrm{C}$	$0.2{ }^{\circ} \mathrm{C}$	$0.03{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
T	-200 to $+400^{\circ} \mathrm{C}$	$0.002{ }^{\circ} \mathrm{C}$	$0.3{ }^{\circ} \mathrm{C}$	$0.04{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
K	-200 to $+1372{ }^{\circ} \mathrm{C}$	$0.002{ }^{\circ} \mathrm{C}$	$0.3{ }^{\circ} \mathrm{C}$	$0.04{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
N	-200 to $+1300{ }^{\circ} \mathrm{C}$	$0.003{ }^{\circ} \mathrm{C}$	$0.4{ }^{\circ} \mathrm{C}$	$0.05{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
R	-50 to $+1768^{\circ} \mathrm{C}$	$0.01{ }^{\circ} \mathrm{C}$	$1^{\circ} \mathrm{C}$	$0.14{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
S	-50 to $+1768^{\circ} \mathrm{C}$	$0.01{ }^{\circ} \mathrm{C}$	$1^{\circ} \mathrm{C}$	$0.14{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
B	+350 to $+1820^{\circ} \mathrm{C}$	$0.01{ }^{\circ} \mathrm{C}$	$1{ }^{\circ} \mathrm{C}$	$0.14{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$

Thermistor: ($2.2 \mathrm{k} \Omega, 5 \mathrm{k} \Omega, 10 \mathrm{k} \Omega$ or User Type)

	Resolution	90 Day $/ 1$ Year $\left(230^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right) *$	Temperature Range
-80° to $150^{\circ} \mathrm{C}$	$0.001^{\circ} \mathrm{C}$	$0.1^{\circ} \mathrm{C}$	$0.003^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$

Reading Rate	TCO/RTD/		
(Readings/sec)	Thermistor	Speed	Digits
	$5 / \mathrm{s}$	$61 / 2$	
	$20 / \mathrm{s}$	$51 / 2$	
	$60 / \mathrm{s}$	$41 / 2$	

[1]. The actual measurement range and test lead error will be constrained by the adopted test lead. The test lead accuracy adder covers all errors of measurements and ITS-90 temerature change.

Capacitance ${ }^{[1]}$

Range	24 Hour $\mathrm{TCAL} \pm 1$	90 Cay $\mathrm{TCAL} \pm 5{ }^{\circ} \mathrm{C}$	1 Year $\mathrm{TCAL} \pm 5{ }^{\circ} \mathrm{C}$	Temperature Coefficient/ ${ }^{\circ} \mathrm{C}$
1.000 nF	$2.00+2.00$	$2.00+2.00$	$2.00+2.00$	$0.05+0.01$
10.00 nF	$2.00+1.00$	$2.00+1.00$	$2.00+1.00$	$0.05+0.01$
100.0 nF	$2.00+0.40$	$2.00+0.40$	$2.00+0.40$	$0.05+0.01$
$1.000 \mu \mathrm{~F}$	$2.00+0.40$	$2.00+0.40$	$2.00+0.40$	$0.05+0.01$
$10.00 \mu \mathrm{~F}$	$2.00+0.40$	$2.00+0.40$	$2.00+0.40$	$0.05+0.01$
$100.0 \mu \mathrm{~F}$	$2.00+0.40$	$2.00+0.40$	$2.00+0.40$	$0.05+0.01$

Accuracy Specifications: \pm ($\%$ of reading $+\%$ of range)
[1]. Specifications are for film Capacitance inputs that are greater than 10\% range. range.

Capacitance

Measurement method: DC recharge \& discharge.
Input protection: 500 Vpeak on all ranges.
The capacitor under test $(C x)$ is charged using a constant current source. The time to charge $C x$ is recorded. The capacitor is then discharged using a known resistance and the discharge time is recorded. The value of the resistance depends on the capacitance range that is selected. The charge and discharge time is used to calculate the capacitance of $C x$ if the selected capacitance range is equal to or less than 10 nF . Only the charge time is used to calculate the capacitance of $C x$ if the selected capacitance range is equal to or greater than 100 nF .

As measuring capacitance with the DMM is effectively a DC measurement, the measured capacitance tends to be higher than what is measured by LCR meters.
For best measurement results, first perform a zeroing of the test leads when the cables are "open" to compensate for the test lead capacitance.

Model description	Type	Speed (ch/sec)	Max volts	Max amps	Bandwidth	Thermal offset	Comments
DAQ-900 20 ch Multiplexer	2-wire armature (4-wire selectable)	450	120 V		10 MHz	< $4 \mu \mathrm{~V}$	Built-in cold junction reference
DAQ-901 20 ch Multiplexer + 2 current channels	2-wire solid-state (4-wire selectable)	80	300 V	1 A	10 MHz	< $4 \mu \mathrm{~V}$	Built-in cold junction reference 2 additional current channels (22 total)
DAQ-902 16 ch Multiplexer	2-wire reed (4-wire selectable)	250	300 V		10 MHz	< $4 \mu \mathrm{~V}$	Built-in cold junction reference
$\begin{aligned} & \text { DAQ-903 } \\ & 40 \mathrm{ch} \\ & \text { Single-Ended Mux } \end{aligned}$	1-wire armature (common low)	100	300 V		10 MHz	$<1 \mu \mathrm{~V}$	Built-in cold junction reference No four-wire measurements
$\begin{aligned} & \text { DAQ-904 } \\ & 4 \times 8 \text { Matrix } \end{aligned}$	2-wire armature	120	300 V		10 MHz	$<1 \mu \mathrm{~V}$	
DAQ-909 8 ch HV Multiplexer +2 current channels	2-wire armature (4-wire selectable)	80	600 V	2 A	10 MHz	$0 \mu \mathrm{~V}$	Built-in cold junction reference 2 additional current channels (10 total)

Dimensions - DAQ-9600

All dimensions are shown in millimeters.

Dimensions - Module

All dimensions are
shown in millimeters.

Declaration of Conformity

We

GOOD WILL INSTRUMENT CO., LTD.
declare that the CE marking mentioned product
satisfies all the technical relations application to the product within the scope of council:
Directive: EMC; LVD; WEEE; RoHS
The product is in conformity with the following standards or other normative documents:

© EMC	
EN 61326-1:	Electrical equipment for measurement, control and laboratory use - EMC requirements
Conducted \& Radiated Emission EN 55011 / EN 55032	On Electrical Fast Transients EN 61000-4-4
Current Harmonics EN 61000-3-2 / EN 61000-3-12	Surge Immunity EN 61000-4-5
Voltage Fluctuations EN 61000-3-3 / EN 61000-3-11	Conducted Susceptibility EN 61000-4-6
Electrostatic Discharge EN 61000-4-2	Power Frequency Magnetic Field EN 61000-4-8
Radiated Immunity EN 61000-4-3	Voltage Dip/ Interruption EN 61000-4-11 / EN 61000-4-34
O Safety	
$\underbrace{\text { EN 61010-1: }}$	Safety requirements for electrical equipment for measurement, control, and laboratory use - Part 1: General requirements

GOODWILL INSTRUMENT CO., LTD.

No. 7-1, Jhongsing Road, Tucheng District, New Taipei City 236, Taiwan
Tel: $\underline{+886-2-2268-0389} \quad$ Fax: +886-2-2268-0639
Web: http://www.gwinstek.com Email: marketing@goodwill.com.tw

GOODWILL INSTRUMENT (SUZHOU) CO., LTD.

No. 521, Zhujiang Road, Snd, Suzhou Jiangsu 215011, China
Tel: $+\underline{86-512-6661-7177}$ Fax: $+86-512-6661-7277$
Web: http://www.instek.com.cn Email: marketing@instek.com.cn

GOODWILL INSTRUMENT EURO B.V.

De Run 5427A, 5504DG Veldhoven, The Netherlands
Tel: $\underline{+31-(0) 40-2557790}$ Fax: $+31-(0) 40-2541194$
Email: sales@gw-instek.eu

NDEX

Accessories 11
Command set
CONFigure commands 225, 261
ROUTe commands 323
SENSe commands 294
STATus report commands 256, 298, 313
SYSTem related commands 302, 320
Crest factor 55, 56
Declaration of conformity 353
Digital I/O
configuration 131
External trigger application 133, 135
Disposal instructions8
EN 61010
measurement category 6
pollution degree 8
Environment
operation 7
storage 8
Ethernet configuration
activation 184, 185
DHCP 187
IP 188
Front panel
overview 13, 19
Fuse
AC fuse replacement 333
safety instruction 7
Getting Started chapter 9
GPIB configuration 181
Line voltage safety instruction 6
Main features 10
 32
Rear panel
overview
overview 17
Remote control
Command syntax 206
Remote terminal session telnet. 200
Safety instruction
fuse 7
Line voltage 6
symbol 5
Specifications
AC
characteristics 343
measuring chacteristics 345
Operating characteristics 346
DC
characteristics 339, 349
measuring characteristics 341
Dimensions 351, 352
Frequency and Period
characteristics 347
measuring characteristics 347
Operating characteristics 348
General 338
Temperature characteristics 348
Status system 327
Table of contents 3
Temperature
RTD setting 61, 63
Thermocouple
junction setting 59
setting 59
Triggering 49overview201
Web control Web control interface 201

