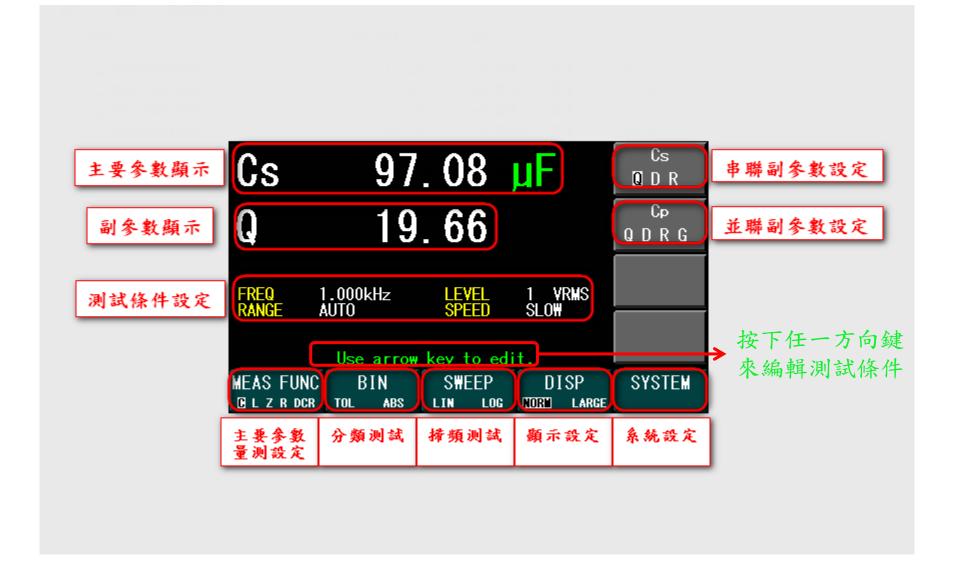
891 300KHz LCR Meter 簡易操作手册

目錄



開機後畫面各項參數說明	3
量測值歸零校正步驟	4
MEAS FUNC有兩種顯示畫面	5
MEAS FUNC測試NORM畫面的各項參數定義	6
MEAS FUNC畫面如何設定及量測?	7
各種量測值的主要參數及副參數對照表	8
何謂Cp、Cs?並且該如何選擇?	9
何謂Lp、Ls?並且該如何選擇?	10
BIN(分類)功能說明(TOL及ABS)	11
BIN(分類)功能有三種顯示方式	12
BIN-TOL(%)-TBL如何設定及量測?	13
BIN-TOL(%)-BIN如何設定及量測?	14
BIN—TOL(%)—HIST如何設定及量測?	15
SWEEP掃頻功能說明(LIN及LOG)	16
SWEEP掃頻功能有兩種顯示方式	17
SWEEP-LIN-GRAPH如何設定及量測?	18

SWEEP-LIN-GRAPH及TBL測試畫面	19
前面板USB儲存方法介紹(SAV)	20
前面板USB呼叫CONFIG方法(RCL)	21
SYSTEM(系統)設定說明(SYSTEM INFO)	22
SYSTEM(系統)設定說明(SYSTEM SETUP)	23
SYSTEM(系統)設定說明(COMM SETUP)	24
USB隨身碟內資料夾說明	25
BMP資料夾內容圖片	26
LOG資料夾內容圖片	27
RLT資料夾內容圖片	28
Z Hi 及Z Lo所代表的意義?	29
範例:SWEEP掃頻測試100uF電解電容	30
SWEEP掃頻結果	31
當覺得機器量測不準的時候,該怎麼辦?	32

開機後畫面各項參數說明

量測值歸零校正步驟

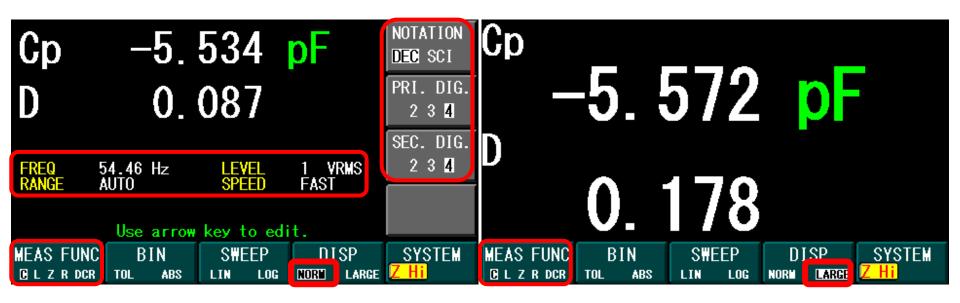
按下SYSTEM

SYSTEM

按鍵之後,切換至CAL畫面:

- 1. 進入CAL校正畫面, 共有兩種校正(OPEN CAL/SHORT CAL)
- 2. OPEN CAL: 開路校正, 當待測物Z值大於2KΩ以上, 請先做OPEN CAL歸零校正! 開路校正: 顧名思義就是將測試夾分開(不要接在一起!)然後按下OPEN CAL
- 3. SHORT CAL:短路校正,當待測物Z值小於500Ω以下,請先做SHORT CAL歸零校正! 短路校正:顧名思義就是將測試夾接在一起!然後按下SHORT CAL
- 4. EXIT(離開SYSTEM書面)

*PS:校正動作不需要常常做,除非待測物Z值大於 $2K\Omega$ 以上,或是小於 500Ω 以下才需要校正!或是量測幾pF小電容,或是覺得量測值不準的時候才需要做校正的動作!


MEAS FUNC有兩種顯示畫面

■ 顯示畫面分為:

NORM:一般畫面(包含測試條件顯示及位數顯示設定及單位設定)

LARGE:大顯示畫面(只保留量測數值)

NORM:一般畫面

LARGE:大顯示畫面

MEAS FUNC測試NORM畫面的各項參數定義

- NOTATION
- 一DEC(十進制)
- 96. 91 JF Cs

- NOTATION
- —SCI(科學表示) **Cs**

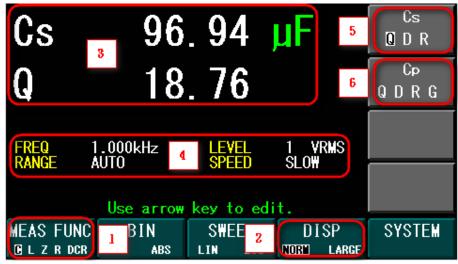
9.691e-05F

- PRI. DIG. —2(2位數顯示)
- SEC. DIG. —2(2位數顯示)
- PRI. DIG. —3(3位數顯示)
- SEC. DIG.
- -3(3位數顯示)
- PRI. DIG.
- **-4(4位數顯示)**
- SEC. DIG.
- **-4(4位數顯示)**

MEAS FUNC測試畫面如何設定及量測?

- 1. 首先選擇要量測哪一種零件或是主參數(C/L/Z/R/DCR)?
- 2. 選擇顯示方式是NORM或LARGE?
- 3. 主要參數及副參數的實際量測值
- 4. 設定此區塊的設定參數(按任一方向鍵即出現游標)

FREQ: 設定測試頻率(20Hz~300KHz) LEVEL: 設定測試電壓(0.5Vrms~1Vrms)


RANGE: 設定量測檔位(HOLD/AUTO) SPEED: 設定畫面更新速度(FAST: 200mS更新一次, SLOW: 800mS更新一次)

RANGE→HOLD功能解釋:當有一批相同數值的零件需要量測,第一次可以使用AUTO來量測,等到確認第一顆的數值之後,再切為RANGE→HOLD此時量測檔位固定,之後零件的量測時間可以縮短!

- 5. 設定串聯時的副參數量測選擇(Q/D/R)
- 6. 設定並聯時的副參數量測選擇(Q/D/R/G)

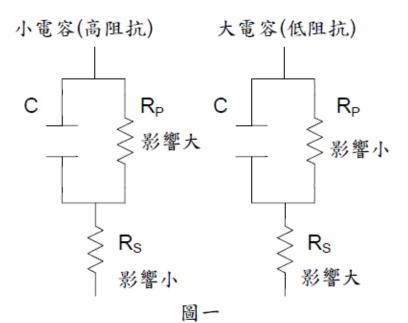
各參數名詞解釋:

- 主要參數: C(電容)、L(電感)、Z(阻抗)、R(實部Z)、DCR(直流阻抗)、Y(導納)
- 副參數:Q(品質因素)、D(耗散因素)、X(虚部Z)、G(實部Y)、B(電納)、θ(角度)

各種量測值的主要參數及副參數對照表

量測值	串聯模式		並聯模式		
	主要參數	副參數	主要參數	副參數	
電容 (Capacitance)	Cs	Q,D,Rs	Ср	Q,D,Rp,G	
電感 (Inductance)	Ls	Q,D,Rs	Lp	Q,D,Rp,G	
電阻 (Resistance)	R	X	-	-	
電導 (Conductance)	-	-	G	В	
阻抗 (Impedance)	Z	θ	-	-	
導納 (Admittance)	-	-	Y	θ	
直流阻抗 (DC Resistance)	DCR	-	-	-	

何謂Cp、Cs?並且該如何選擇?


- Cp: Parallel Capacitance(並聯電容)
- Cs: Series Capacitance (串聯電容)
- 量測電容時,該選擇Cp或Cs量測模式?

舉例:當f=10KHz, C=100pF, 該選擇Cp或Cs來量測呢?

ANS:電容阻抗 $Z=1/2\pi$ fC=159K Ω

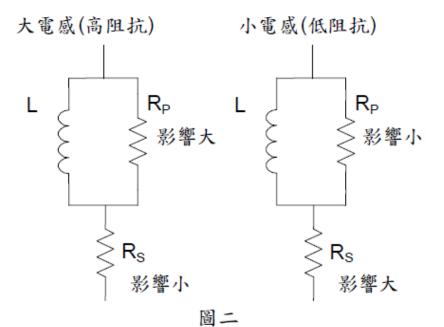
或是直接用機器先量測Z值!

159KΩ>10KΩ, 所以選擇並聯模式Cp是比較正確的量測方式!

量測電容前請先放電! 否則會造成LCR METER損壞!

- ◆阻抗值小於 10Ω,使用串聯模式。
- ◆阻抗值大於 10KΩ,使用並聯模式。
- ◆兩者之間則視需求而定。

何謂Lp、Ls?並且該如何選擇?


- Lp: Parallel Inductance (並聯電感)
- Ls: Series Inductance (串聯電感)
- 量測電感時,該選擇Lp或Ls量測模式?

舉例:當f=10KHz, L=100uH, 該選擇Lp或是Ls來量測呢?

ANS:電感阻抗 $Z=2\pi$ fL=6.2 Ω

或是直接用機器先量測Z值!

$6.2\Omega<10\Omega$, 所以選擇串聯模式Ls是比較正確的量測方式!

- ◆阻抗值小於 10Ω,使用串聯模式。
- ◆阻抗值大於 10KΩ,使用並聯模式。
- ◆兩者之間則視需求而定。

BIN(分類)功能說明(TOL及ABS)

■ BIN(分類)功能設定種類可分為兩種:

TOL:設定待測物的可允許範圍%(可設定正負%)

ABS:設定待測物的可允許範圍值(可設定正負值)

TOL以%來當作範圍的設定, ABS以兩值之間的範圍來設定

BIN(分類)功能有三種顯示方式

一般顯示畫面(BIN)

顯示分類設定畫面(TBL) 要優先進入此畫面設定分類範圍!

顯示分類後長條圖畫面(HIST)

BIN—TOL(%)—TBL如何設定及量測?

- 1. 首先切到BIN的TOL(%)畫面
- 2. DISP書面切至TBL
- 3. 設定此區塊的設定參數(按任一方向鍵即出現游標)

FUNC: 設定量測主要參數及副參數 FREQ: 設定測試頻率(20Hz~300KHz) RANGE: 設定量測檔位(HOLD/AUTO)

NOM: 設定零件標準值(TOL才有)LEVEL: 設定測試電壓(0.5Vrms/1Vrms) SPEED: 設定畫面更新速度(FAST: 200mS更新一次, SLOW: 800mS更新一次)

RANGE→HOLD功能解釋:當有一批相同數值的零件需要量測,第一次可以使用AUTO來量測,等到確認第一顆的數值之後,再切為RANGE→HOLD此時量測檔位固定,之後零件的量測時間可以縮短!

- 4. 按任一方向鍵即出現游標, 設定各分類的範圍值(TOL是設定%, 可設定正負)共有1~9個分類範圍, 每個分類都有High/Low Limit 設定, SEC(副參數範圍值), 及OUT(完全超出範圍)
- 5. SEC(當主要參數有在1~9範圍內,而副參數沒有在範圍內的話, SEC+1), OUT(當主要參數沒進1~9範圍內, OUT+1) 請參考下面表格!
- 6. START開始BIN測試
- 7. BEEP設定狀態蜂鳴器(設定哪個狀態,哪個狀態就發出聲音!)(OFF/PASS/FAIL)
- 8. SWAP將主要參數及副參數對調位置 FUNC Q -Cs FUNC Cs-Q
- 9. CLEAR清除各範圍的RESULT(結果)值
- 10.按下START之後,會出現TRIG畫面,接好待測物之後,按下TRIG鍵開始分類(每按一次TRIG才會分類一次)
- 11. STOP停止BIN測試

主要參數進入	副參數 進入	BIN +1
主要參數進入	副參數 沒有	SEC +1
主要參數 沒有	副參數 進入	OUT +1
主要參數 沒有	副參數 沒有	OUT +1

BIN—ABS—TBL的操作 與BIN—TOL(%)—TBL 設定相同,只是差別於 ABL是輸入數值而TOL 則是輸入%

BIN—TOL(%)—BIN如何設定及量測?

- 1. 首先切到BIN的TOL畫面
- 2. DISP書面切至BIN
- 3. 設定此區塊的設定參數(按任一方向鍵即出現游標)

FUNC: 設定量測主要參數及副參數 FREQ: 設定測試頻率(20Hz~300KHz) RANGE: 設定量測檔位(HOLD/AUTO)

NOM: 設定零件標準值(TOL才有)LEVEL: 設定測試電壓(0.5Vrms/1Vrms) SPEED: 設定畫面更新速度(FAST: 200mS更新一次, SLOW: 800mS更新一次)

RANGE→HOLD功能解釋:當有一批相同數值的零件需要量測,第一次可以使用AUTO來量測,等到確認第一顆的數值之後,再切為RANGE→HOLD此時量測檔位固定,之後零件的量測時間可以縮短!

- 4. 顯示目前量測到的主要參數及副參數值(TBL及HIST畫面無法即時顯示量測值)
- 5. TOL%量測值與標準值之間的%誤差(TBL及HIST畫面無法即時顯示誤差%)
- 6. BIN?目前分類到哪一個範圍?(請先進入TBL畫面來設定分類的範圍!)
- 7. TOTAL CNT全部已經測試過幾次?
- 8. START開始BIN測試
- 9. BEEP設定狀態蜂鳴器(設定哪個狀態,哪個狀態就發出聲音!)(OFF/PASS/FAIL)
- 10.SWAP將主要參數及副參數對調位置 FUNC Q -Cs FUNC Cs-Q
- 11. CLEAR清除各範圍的RESULT值, 也包含TOTAL CNT的次數
- 12. 按下START之後, 會出現TRIG畫面, 接好待測物之後, 按下TRIG鍵開始分類(每按一次TRIG才會分類一次)
- 13. STOP停止BIN測試

BIN—ABS—BIN的操作 與BIN—TOL(%)—BIN 設定相同,只是差別於 ABL是輸入數值而TOL 則是輸入%

BIN—TOL(%)—HIST如何設定及量測?

- 1. 首先切到BIN的TOL畫面
- 2. DISP書面切至HIST
- 3. 設定此區塊的參數(按任一方向鍵即出現游標)

FUNC:設定量測主要參數及副參數 FREQ:設定測試頻率(20Hz~300KHz) RANGE:設定量測檔位(HOLD/AUTO)

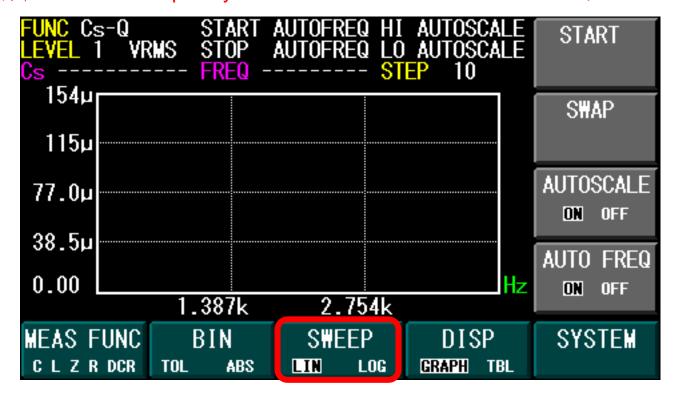
NOM: 設定零件標準值(TOL才有)LEVEL: 設定測試電壓(0.5Vrms/1Vrms) SPEED: 設定畫面更新速度(FAST: 200mS更新一次, SLOW: 800mS更新一次)

RANGE→HOLD功能解釋: 當有一批相同數值的零件需要量測, 第一次可以使用AUTO來量測, 等到確認第一顆的數值之後, 再切為RANGE→HOLD此時量測檔位固定, 之後零件的量測時間可以縮短!

- 4. 顯示各範圍的長條圖(請先進入TBL畫面來設定分類的範圍!)
- 5. START開始BIN測試
- 6. BEEP設定狀態蜂鳴器(設定哪個狀態,哪個狀態就發出聲音!)(OFF/PASS/FAIL)
- 7. SWAP將主要參數及副參數對調位置 FUNC Q -Cs FUNC Cs-Q
- 8. CLEAR清除各範圍的RESULT值
- 9. 按下START之後, 會出現TRIG畫面, 接好待測物之後, 按下TRIG鍵開始分類(每按一次TRIG才會分類一次)
- 10. STOP停止BIN測試

BIN—ABS—HIST的 操作與 BIN—TOL(%)—HIST 設定相同,只是差別 於ABL是輸入數值而 TOL則是輸入%

SWEEP掃頻功能說明(LIN及LOG)

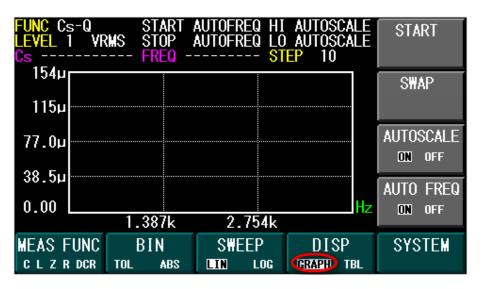

SWEEP(掃頻)功能分為:

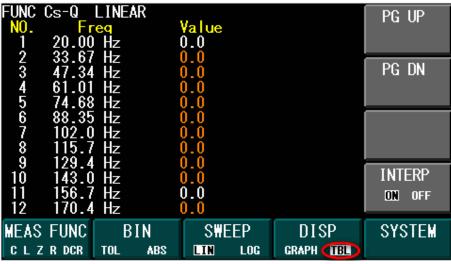
LIN:線性掃頻,步進頻率點計算方式如下:

(步進頻率點F = STEP * (stop frequency – start frequency)/300 + start frequency)

LOG: 對數掃頻, 步進頻率點計算方式如下:

(步進頻率點F= Start frequency * 10((STEP/300)*log(stop frequency/start frequency)))

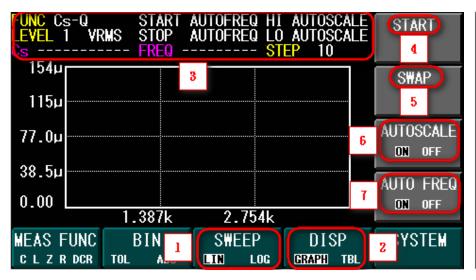



SWEEP掃頻功能有兩種顯示方式

圖形化顯示方式(GRAPH)

列表顯示方式(TBL)

SWEEP—LIN—GRAPH如何設定及量測?



- 1. 首先切到SWEEP的LIN書面
- 2. DISP書面切至GRAPH
- 3. 設定此區塊的設定參數(按任一方向鍵即出現游標)

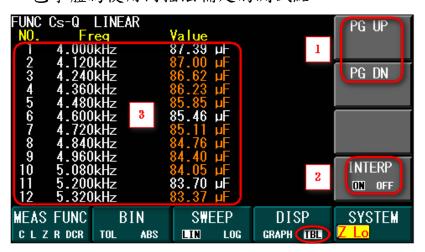
FUNC: 設定量測主要參數及副參數 START: 設定開始測試頻率或是AUTOFREQ HI: 設定量測主要參數的最大值或是AUTOSCALE LEVEL: 設定測試電壓(0.5 Vrms/1 Vrms) STOP: 設定結束測試頻率或是AUTOFREQ LO: 設定量測主要參數的最小值或是AUTOSCALE STEP: 1/2/5/10可選擇(數字越大, 測試點越少)

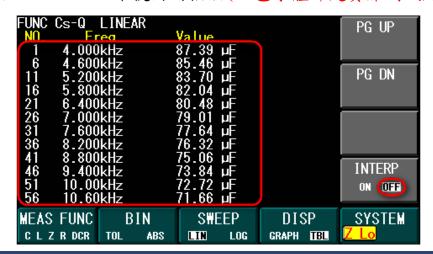
- 4. START開始SWEEP掃描
- 5. SWAP將主要參數及副參數對調位置 FUNC Q -Cs FUNC Cs-Q
- 6. AUTOSCALE ON自動調整主要參數表格顯示的最大值及最小值, AUTOSCALE OFF是手動輸入表格顯示的最大值及最小值
- 7. AUTO FREQ ON自動調整開始及停止測試頻率, AUTO FREQ OFF是手動輸入開始及停止測試頻率

可以直接選擇AUTOSCALE ON 及AUTO FREQ ON, 讓機器自己尋找最適合的數值範圍及頻率範圍



SWEEP-LOG-GRAPH與SWEEP-LIN-GRAPH設定一樣,差別只是步進頻率的不同


SWEEP—LIN—GRAPH及TBL測試畫面


CURSOR LEFT及CURSOR RIGHT按下之後會出現游標,利用移動游標來找尋測試點的數值

- 1. PG UP及PG DN:上下頁(共300點)
- 2. INTERP ON:使用內插法補足300點
- 3. 總共300點的資料, 白色字體為測試點, 其餘橘色字體為使用內插法補足的測試點

1. INTERP OFF:不使用內插法(白色字體都是實際測試點)

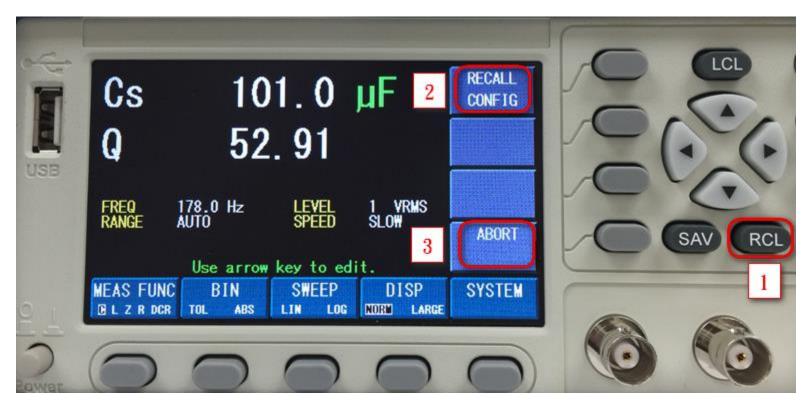
前面板USB儲存方法介紹(SAV):

BMP

CFG

LOG

RLT


- 1. 按下前面板的SAV鍵, 會出現左邊的2, 3, 4, 5選項
- 2. SAVE CONFIG(儲存設定參數值,包含MEAS FUNC, BIN, SWEEP的設定值都會儲存下來) 儲存在CFG的資料夾內,檔案格式為. CFG檔(機器內部可儲存10組) __
- 3. SAVE MEAS(儲存量測值,將螢幕上的量測值用文字檔方式記錄下來)儲存在RLT的資料夾內,檔案格式為. TXT檔
- 4. SAVE SCREEN(儲存整個螢幕畫面,用BMP圖檔的方式記錄下來) 儲存在BMP的資料夾內,檔案格式為.BMP檔
- 5. ABORT(取消)

前面板USB呼叫CONFIG方法(RCL):

- 1. 按下前面板的RCL鍵, 會出現左邊的2, 3選項
- 2. RECALL CONFIG(呼叫設定參數值,呼叫出儲存在USB內CFG資料夾中的. CFG檔)
- 3. ABORT(取消)

SYSTEM(系統)設定說明(SYSTEM INFO)

按下SYSTEM

SYSTEM

按鍵之後, 出現SYSTEM INFO書面:

- 1. SYSTEM INFO顯示目前的機器資訊:機型/序號/版本/電池電壓/USB裝置/通訊介面資訊等
- 2. CLEAR ERROR(清除指令SCPI錯誤訊息,若是有多筆錯誤,每按一次就顯示並清除一次)
- 3. RESET(恢復原廠設定值)
- 4. EXIT(離開SYSTEM畫面)

SYSTEM(系統)設定說明(SYSTEM SETUP)

按下SYSTEM 安鍵之後,出現SYSTEM SETUP畫面

按下SYSTEM SETUP按鍵之後,出現下列畫面: (按任一方向鍵即出現游標設定)

- 1. Date (Y/M/D)顯示目前日期資訊:年/月/日
- 2. Time (H:M:S)顯示目前時間資訊:小時/分鐘/秒
- 3. Brightness顯示目前螢幕亮度設定資訊:1~9(1最暗, 9最亮)
- 4. Beep顯示目前蜂鳴器設定狀態(ON/OFF)
- 5. Bin Log顯示目前Bin分類功能是否要儲存每一筆的量測值(ON/OFF) BIN Log ON的話,前提是USB隨身碟必須要先插至機器前板, 等BIN功能測試完畢之後,按下STOP鍵之後會自動儲存在LOG資料夾內! LOG 檔案格式為. TXT檔~若是沒事先插USB至前板,則取消儲存動作!

SYSTEM SETUP
Date (Y/M/D)
Time (H:M:S)
Brightness
Beep
Bin Log

Use arrow key to edit.

SYSTEM
SYSTEM
SETUP

SETUP

SYSTEM
SETUP

SETUP

SYSTEM
SETUP

SETUP

SYSTEM
SETUP

SETUP

SETUP

SYSTEM
SETUP

SETUP

SETUP

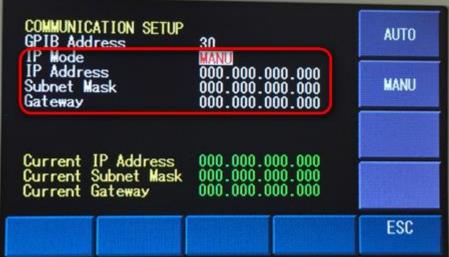
SYSTEM(系統)設定說明(COMM SETUP)

按下SYSTEM

SYSTEM

按鍵之後,出現COMM SETUP畫面

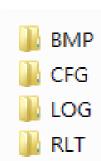
按下COMM SETUP按鍵之後,出現下列畫面: (按任一方向鍵即出現游標設定)


- 1. GPIB Address顯示目前的GPIB位址(1~30)
- 2. IP Mode顯示目前的網路(LAN)介面位址(AUTO/MANU)

AUTO:自動給予IP Address

MANU:手動輸入IP Address

■ 實際的Address資訊



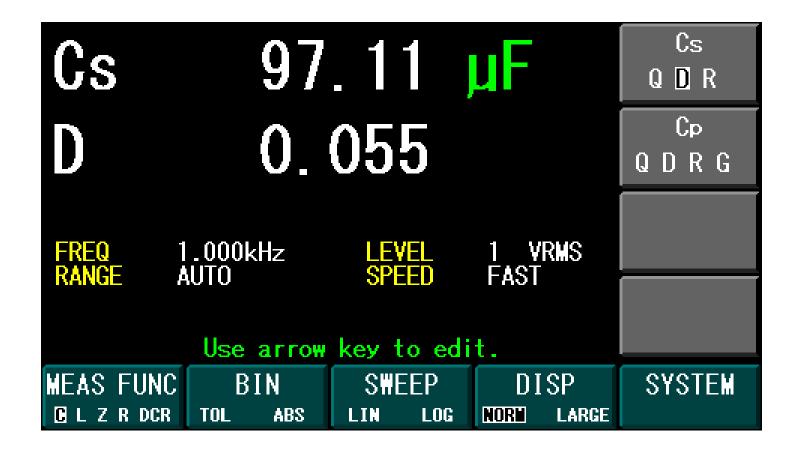
USB隨身碟內資料夾說明

■ BMP資料夾→儲存SAVE SCREEN(儲存整個螢幕畫面) 檔案格式為.BMP檔

■ CFG資料夾→儲存SAVE CONFIG(儲存設定參數值,包含MEAS FUNC, BIN, SWEEP的設定值都會儲存下來)

檔案格式為. CFG檔

■ LOG資料夾→儲存Bin Log的資料(把每一筆經過Bin測試過的量測值都記錄下來)前提是USB隨身碟要先插至前板USB!


檔案格式為.TXT檔

■ RLT資料夾→儲存SAVE MEAS(儲存量測值,將螢幕上的量測值用文字 檔方式記錄下來)

檔案格式為.TXT檔

BMP資料夾內容圖片

LOG資料夾內容圖片

RLT資料夾內容圖片


```
891RLT001.TXT - 記事本
       編輯(E) 格式(O) 檢視(V)
                             說明(H)
 檔案(F)
  SINGLE MEASUREMENT
            2015/10/28
|Date:
Time:
               16:40:56
          : 1.000kHz
               VRMS
RANGE
           FAST
SPEED
     97.10 uF
```

0.055

Z Hi 及Z Lo所代表的意義?

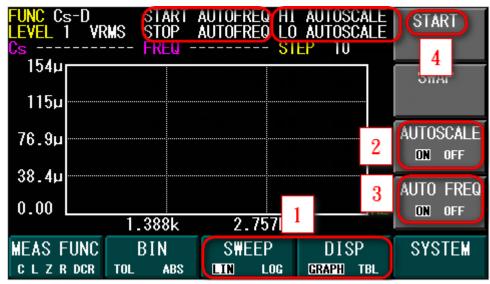
■ 當出現Z Hi的字樣時,代表的是什麼意思呢?

Ans:891 LCR METER的Z量測範圍為 0.1Ω ~20M Ω ,若是出現Z Hi的字樣,代表目前的<mark>待測物Z值已經超出20M Ω !</mark>已經超出機器本身的量測能力!量測到的值已經無法保證其準確度了!

請再次確認測試頻率是否正確?

■ 當出現Z Lo的字樣時, 代表的是什麼意思呢?

Ans:891 LCR METER的Z量測範圍為 0.1Ω ~20M Ω ,若是出現Z Lo的字樣,代表目前的<mark>待測物Z值已經低於 0.1Ω !</mark>已經超出機器本身的量測能力!量測到的值已經無法保證其準確度了!


請再次確認測試頻率是否正確?

範例:SWEEP掃頻測試100uF電解電容

- 1.使用SWEEP(掃頻)→Lin(線性)→GRAPH(圖形化顯示)
- 2. AUTOSCALE→ON(自動調整主要參數表格顯示的最大值及最小值)
- 3. AUTO FREQ→ON(自動調整開始及停止測試頻率)
- 4. START開始掃頻
- 測試結果請看下一頁

SWEEP掃頻結果

- 1.得到電容值/頻率的特性曲線~
- 2.100uF電解電容可應用頻率範圍:20Hz~4.114KHz
- 2. 在應用頻率範圍下的電容值是介於:87. 15uF~102. 7uF

當覺得機器量測不準的時候,該怎麼辦?

- 891 Z值可量測範圍為0.1Ω~20MΩ(超出範圍就不保證)
- 20Hz~300KHz的量測準確度介於0.05%~10%(NA:不保證其準確度)

**當覺得機器量測不準的時候,

請先量測Z值確認在是在 $0.1\Omega~20M\Omega$ 之間,否則不予保證其準確度**

Impedance Measurement (Z) Accuracy (1)					
Impedance	Frequency				
impedance	DC, 20 Hz – 1 kHz	1 kHz – 10 kHz	10 kHz- 100 kHz	100 kHz – 200 kHz	200 kHz – 300 kHz
$0.1 \Omega - 1 \Omega$	1% ± 1	1% ± 1	2% ± 1	5% ± 1	10% ±1
Ι Ω – 100 Ω	0.5% ± 1	0.5% ± 1	1% ± 1	2% ± 1	4% ± I
100 Ω – 1 kΩ	0.2% ± 1	0.2% ± 1	0.2% ± 1	0.5% ± 1	1% ± 1
$1 \text{ k}\Omega - 10 \text{ k}\Omega$	0.05% ± 1	0.2% ± 1	0.5% ± 1	1% ± 1	2% ± 1
10 kΩ – 100 kΩ	0.2% ± 1	0.2% ± 1	0.5% ± 1	1% ± 1	2% ± 1
100 kΩ – 1 MΩ	0.5% ± 1	0.5% ± 1	2% ± 1	2% ± 1	4% ± 1
$1 \text{ M}\Omega - 10 \text{ M}\Omega$	1% ± 1	2% ± 1	5% ± 1	5% ± 1	10% ± 1
$10 \text{ M}\Omega - 20 \text{ M}\Omega$	4% ± I	5% ± 1	NA	NA	NA

Thank you!

