DS 全系列机型: DS3640-MO / DS6024-MO / DS8018-MO /DS10014-MO/DS15010-MO/DS30052-MO

可编程直流电源供应器 使用手册

法律事项声明

本使用手册内容如有变更,恕不另行通知。

本公司并不对本使用手册之适售性、适合作某种特殊用途之使用或其他任何事 项作任何明示、暗示或其他形式之保证或担保。故本公司将不对手册内容之错 误,或因增减、展示或以其他方法使用本手册所造成之直接、间接、突发性或 继续性之损害负任何责任。

台湾百科精密仪器(股)公司 新北市深坑区北深路 3 段 250 号 3 楼

版权声明:著作人-台湾百科-公元 2010 年,版权所有,翻印必究。 未经本公司同意或依著作权法之规定准许,不得重制、节录或翻译本使用手册 之任何内容。

保证书

台湾百科精密仪器(股)公司秉持 "质量保证可靠,服务永远周到"之信念,对 所制造及销售之产品自交货日起一年内,保证正常使用下产生故障或损坏,负 责免费修复。

保证期间内,对于下列情形之一者,本公司不负免费修复责任,本公司于修复 后依维修情况酌收费用:

(1) 非本公司或本公司正式授权代理商直接销售之产品。

(2) 因不可抗拒之灾变,或可归责于使用者未遵照操作手册规定使用或使用人 之过失,如操作不当或其他处置造成故障或损坏。

(3) 非经本公司同意,擅自拆卸修理或自行改装或加装附属品,造成故障或损 坏。

保证期间内,故障或损坏之维修品,使用者应负责运送到本公司或本公司指定 之地点,其送达之费用由使用者负担。修复完毕后运交使用者(限台湾地区)或 其指定地点(限台湾地区)之费用由本公司负担。运送期间之保险由使用者自行 向保险公司投保。

台湾百科精密仪器(股)公司

新北市深坑区北深路3段250号3楼 服务专线:02-77416699 传真电话:02-77416686

电子邮件:bktaiwan@bkprecision.com.tw 网址:http://www.bktw.com.tw/

重要 safe 使用指南

请妥善存放本操作手册 : 内含产品之安装使用、保养维护、safe 相 关等重 要图文说明。

专业合格检修人员

- ◆ □ 如本操作手册所述,产品内部既不含零配件备份,亦无用户专属微调功能,使用时禁止拆除本产品外壳,若有使用疑问欢迎请洽本公司或各代理商之专业服务人员。
- ◆ □ 获授权之专业人员拆除外壳进行检修时,仍须适当防护以免触电危险。
- ◆ □ 避免自行改装使用本产品及其零配件,以免造成危害及保固失效。

常规操作注意事项

- ◆本产品建议之操作环境温度为 0~40℃、相对湿度 20~80%;超出额定温度 湿度、爆炸性气体挥发处、可燃性液体或易燃物囤积等不良场所中不应开 机使用。电源线装配位置亦应妥当,避免杂散于走道使人员绊脚或承受应 力下使用。
- ◆ 为顾及人员 safe 与产品保固权益,建议使用者应于通电开机前,肉眼检视本产品外观之完整性。如机件松动、按钮脱落、外壳受力凹陷、锐角或裂痕等其它缺损状况发生时,请联系本公司或各代理商。
- ◆ 避免使用残缺损坏或未经安规许可之电源线,更换新电源线或加装延长线, 亦应选用符合本机额定规格之线材。
- ◆ 使用时务必确认电源之保护性接地已牢靠连接,与本机搭配使用之其它电 气设备亦同,确保人员及本机 safe。
- ◆ 具备电气基本观念,并详知理解该操作手册者,属本机之适用者。
- ◆ 本机所附之电源线符合安规许可,正确使用可确保 safe 无虞,拔插电源时 应手握插头,直接拉扯线材可能导致危险。电源关闭瞬间(TURN OFF POWER SWITCH),电容内之残余电荷仍有感电可能,建议静待 5 分钟、或内部风 扇运转至停止亦表示放电完成。
- ◆ 进行一般性保养维护前,请关闭本机电源、拔除电源插头,并切断所连接 之负载,以干布拂拭外壳和电源线,避免使用肥皂水或有机溶剂以策 safe。

※※※ 储存. 搬运. 维护. 处置 ※※※

储存

本装置不使用时,请将本装置适度包装,置于符合本装置保存环境下进行储存。 (若保存环境良好,可免除包装作业)。

搬运

本装置在搬运时,请使用原有包装材料包装后再行搬运。若包装材料遗失,请 使用相当的缓冲材料进行包装并注明易碎、防水等符号再行搬运,以防止搬运 过程中造成本装置损坏。

本装置属精密器具,请尽量使用合格的运输工具进行运输。并尽量避免重落下 等易损害本装置的动作。

维护

本装置内无任何一般用户可维护操作项目。(说明书中注明者除外)当本装置发生 任何用户判断异常时,请连络本公司或各代理商,切勿自行进行维护作业,以 免发生不必要的危险,亦可能对本装置造成更大损坏。

处置

本装置不使用时,请依贵公司的报废处理程序进行处理,或依贵公司所在地的 合法程序进行本装置处理。切勿任意遗弃以免造成环境破坏。

	目录	
1.	前言	9
	1.1 产品概要	9
	1.2 特点	9
2.	各机型成品规格表	11
3.	使用前注意事项	
	3.1 使用前附件确认	
	3.2 使用说明	
	3.3 使用周围环境	
	3.4 保存	
	3.5 申源电压	
	3.6 保险丝	
	3.7 预热时间	15
	3.8 测试终止	15
	3.9 使用注意事项	16
4.	面板说明	17
	4.1 DS 全系列面板说明	
	4.1.1 前板说明	
	4.1.2 后板说明	
5.	操作说明	
	5.1 设定电压	34
	5.2 设定电流	34
	5.3 过电压保护 OVP	34
	5.4 过电流保护 OCP	35
	5.5 电压输出	35
	5.6 电压输出时可由飞梭旋钮控制	35
	5.7 定时器功能	36
	5.8 串/并联设定	36
	5.8.1 并联设定	

	5.8.2 串联设定(适用于高电流机型)	
	5.8.3 串/并联错误讯息	
	5.9 外部模儗介面	41
	5.10 电流计数功能	51
	5.11 Program 功能(SCPI command only)	53
	5.12 串接功能(RS485)	58
	5.12.1 串接命令行表	59
	5.12.2 错误回应列表	62
	5.13 RS485 控制	62
6.	保護功能及错误讯息	67
	6.1 过电压保护功能(OVP)	67
	6.2 过电流保护功能(OCP)	67
	6.3 过功率保护功能(OPP)	67
	6.4 定电压保护功能(CV TO CC)	68
	6.5 定电流保护功能(CC TO CV)	68
	6.6 过温度保护功能(OTP)	68
	6.7 过低压保护功能(ACD)	69
	6.8 输入值错误讯息	69
7.	远程接口通信协议及封包模式	70
	7.1 前言	70
	7.2 参数定义	70
	7.3 错误/事件列表	71
	7.4 SCPI 相符合的信息	74
	7.4.1 SCPI 常见指令	74
	7.4.2 SCPI 指令副系统	75
	7.5 状态定义的规则	83
	7.6 LAN 通讯	84
	7.6.1 使用 Web Server	84
	7.6.2 使用 Telnet	87
	7.6.3 使用 Sockets	
8.	附件组装说明	89

8.1 固定耳片、握把组装图
8.2 DS6024-MO/DS8018-MO/DS10014-MO 电源输出端防护
罩拆装说明图
8.3 DS6024-MO /DS8018-MO/ DS10014-MO RMT / LCL Sense
防护罩拆装说明图90
附件一览表 91

9.

1. 前言

1.1 产品概要

台湾百科 DS 全系列电源供应器为单组输出可编程直流电源供应器,此为交换式 电源供应器设计, DS 全系列电源供应器是使用 16bit 的 D/A、A/D Converter, 电压分辨率为 1mV、电流分辨率为 1mA。DS 全系列电源供应器独立一组电源输 出,可提供高达 1440W/1560W 的功率输出。提供多机串并联(最多 4 台)模式, 串联电压输出可至 400V(DS10014-MO * 4)、并联电流输出可至 160A (DS3640-MO * 4),让你在电路应用上更加方便、灵活。

DS 全系列电源供应器增加了飞梭旋钮及数字功能键,在设定上更加的容易、快速。可将设定值直接储存于内存(10组)中,增添操作上的方便。另有 Program 功能,来控制输出何时 OFF,可用于烧机室的 safe 性考虑及电镀方面的运用。 OVP(过电压)、OCP(过电流)、OPP(过功率)保护可由面板控制及监控,且有按键 锁功能,使客户不易因误触而变动到原设定值。当电源及负载变动时,0.05% load and line regulation 及小于 1mS 的反应时间,这两项功能使 DS 全系列电源 供应器有稳定的输出。

1.2 特点

机型	输出电压	输出电流	输出总功率
DS3640-MO	0 - 36V	0 - 40A	
DS6024-MO	0 - 60V	0 - 24A	0 1440\\
DS8018-MO	0 - 80V	0 - 18A	0-144000
DS10014-MO	0 - 100V	0 - 14.4A	
DS15010-MO	5 - 150 V	0.04 - 10.4 A	
DS30052-MO	5 - 300 V	0.02 - 5.2 A	0 - 1560W
DS60026-MO	5 - 600 V	0.01 - 2.6 A	

1. 输出电压电流:

在额定功率、电压及电流输出下,可自由组合所要的设定。

2. 数字式飞梭旋钮、数字键、功能键的设定

数字式的飞梭旋钮可以瞬间改变电压的设定,仿真电压电流剧升剧降的状态, 对于触发电路的测试提供了很好的解决方法。数字键功能使的用户更加容易、 快速的设定,不用再忍受传统式的 VR 模拟调整。以功能键来切换各种模式时, 让整体操作更加人性化、更容易上手。

3. 精准的电压及电流量测:

除了准确的输出之外, DS 全系列本身还提供了电压及电流的精准量测, 让你省下了额外的量测仪器经费及设备空间。

4. 内存及定时器功能:

总共 10 组的内存, 让生产线人员不需记忆太多的设定值, 只要将设定值储存于 DS 全系列之中, 就可以随时呼叫出来, 省去了文件的规格记录。Program 功能 让机器于烧机室烧机不需要随时注意时间, 时间一到马上停止输出, 兼顾了 safe 性及灵活性。用在电镀方面的应用, 不管是时间的掌控或是电流的分辨率, 都 可完全符合客户的需求。

5. 过电压、过电流、过功率保护及按键锁功能:

OVP、OCP、OPP 保护不仅可以保护待测物,更提供了使用者在实验上的 safe 性。 按键锁功能让你在设定完之后,不会因为外部的干扰及误动作而改变了原有的 设定值。

6. 多机串、并联模式:

使用多机串并联模式(最多 4 台),可大幅度提高供电的能力。 在 4 台 DS3640-MO 并联模式下可提供 36V/160A,

在 4 台 DS10014-MO 串联模式下可提供 400V/14.4A,

在 4 台 DS60026-MO 并联模式下可提供 630V/10.4A,

在此各模式下可提供高达 6240W/5760W,可满足多数的电力实验需求。

7. 多机串接模式:

计算机透过 USB 接口联机至机器端,机器之间利用 RS485 接口来串接,最多可 以串接 31 台。可以节省掉 GPIB 适配卡及 GPIB 线材费用,达到联机控制简单化。

2. 各机型成品规格表

型号	DS3640-MO	DS6024-MO	DS8018-MO	DS10014-MO
额定输出				
输出电压	0-36 V	0-60 V	0-80 V	0-100 V
输出电流	0-40 A	0-24 A	0-18 A	0-14.4 A
输出功率		1440)W	
输出保护				
过电压保护调整范围	2 - 38V	3 - 64V	4 - 85V	5 - 105V
过电压保护精确度	200mV	300mV	400mV	500mV
电源效应(线性调整率))			
电压	≦4mV	≦6mV	≦8mV	≦10mV
电流	≦4mA	≦4mA	≦4mA	≦4mA
负载效应(负载调整率))			
电压	≦8mV	≦8mV	≦10mV	≦12mV
电流	≦8mA	≦7mA	≦6.5mA	≦6mA
纹波和噪声(20Hz \sim 2	20MHz)			
电压	≦5mVrms / ≦ 60mVpp	≦6mVrms / ≦ 70mVpp	≦ 7mVrms / ≦ 80mVpp	≦8mVrms / ≦ 80mVpp
电流	≦90mA	≦70mA	≦50mA	≦40mA
分辨率				
可编程与显示	1mV/1mA	1.5mV/1mA	2mV/1mA	2.5mV/1mA
可编程与显示精准度 ±(% of output + offse	t)		
电压	0.05% + 10mV	0.05% + 15mV	0.05% + 20mV	0.05% + 25mV
电流	0.05% +10mA	0.05% + 18mA	0.05% + 7mV	0.05% + 6mV
一般性规格				
暂态响应时间		≦1r	nS	
效率		≧80)%	
OVP 调整范围	2 - 38V	3 - 64V	4 - 85V	5 - 105V
OVP 精准度	200mV	300mV	400mV	500mV
平均指令响应时间		≦50	mS	
功率因数		≥0.99(全载)	
远程电压补偿		2۷	/	
上升时间(满载)	\leq 15mS	\leq 20mS	\leq 25mS	\leq 30mS
上升时间(空载)	\leq 15mS	≦20mS	\leq 25mS	≦30mS
下降时间(满载)	\leq 15mS	≦20mS	\leq 25mS	≦30mS
下降时间(空载)		≦100	0mS	
	USB, RS485, 模拟程控			
选配接口	LAN, GPIB			

一般规格	
电源	100 - 240 VAC / 47 Hz - 63 Hz
电源范围	-15 % to +10 % (当电源低于 95VAC 时,机器输出功率会降低 10%)
输入功率 max.	1700VA
温度范围	操作(0 ℃ - 40 ℃) / 存储(-10 ℃ - 70 ℃)
尺寸(W×H×D)	16.5" x 1.72" x 17" (420 x 43.6 x 432 mm)
重量	19.8 磅 (9 公斤)
出厂随机配件	电源线',机箱套件,测试报告,保证书,输出接头(高电流机型适用)

①高电流机型标配电源线规格为 16A AC 欧规公头(随机 90°或 180°)转 C19 母头,1.8 米长

型号	DS15010-MO	DS30052-MO	DS60026-MO
额定输出			
输出电压	5-150 V	5-300 V	5-600 V
输出电流	0.04- 10.4 A	0.02- 5.2 A	0.01- 2.6 A
输出功率		1560	W
输出保护			
过电压保护调整范围	5~158V	5~315V	5~630V
过电压保护精确度	750mV	1.5V	3V
电源效应(线性调整率))		
电压	\leq 17mV	≦32mV	≦62mV
电流	\leq 20.8mA	\leq 10.4mA	≦5.2mA
负载效应(负载调整率))		
电压	≦17mV	≦32mV	≦62mV
电流	≦40.4mA	≦20.8 mA	≦10.4mA
纹波和噪声(20Hz \sim 2	20MHz)		
电压	≦10mVrms / ≦ 100mVpp	≦25mVrms / ≦ 150mVpp	\leq 50mVrms / \leq 30mVpp
电流	≦90mA	≦70mA	≦5mA
分辨率			
可编程与显示		10mV/	1mA
可编程与显示精准度 ±(% of output + offse	t)	
电压	0.05% + 75mV	0.05% + 150mV	0.05% + 300mV
电流	0.1% + 30mA	0.1 %+15.6mA	0.1 %+7.8mA
一般性规格			
暂态响应时间		≦2r	nS
效率		≥80%(<u>*</u>	全载)
OVP 调整范围	5 - 158V	5 - 315V	5 - 630V
OVP 精准度	750mV	1.5V	3V

平均指令响应时间		≦50mS	
功率因数		≥0.99(全载)	
远程电压补偿		5V	
上升时间(满载)		≦100mS	
上升时间(空载)		≦100mS	
下降时间(满载)		≦100mS	
下降时间(空载)	≦1000mS	≦2000mS	≦3000mS
标准接口		USB, RS485, 模拟程控	
选配接口		LAN, GPIB	

一般规格	
电源	100 - 240 VAC / 47 Hz - 63 Hz
电源范围	-15 % to +10 % (当电源低于 95VAC 时,机器输出功率会降低 10%)
输入功率 max.	1950VA
温度范围	操作(0 ℃ - 40 ℃) / 存储(-10 ℃ - 70 ℃)
尺寸(W×H×D)	16.5" x 1.72" x 17" (420 x 43.6 x 432 mm)
重量	19.8 磅 (9 公斤)
出厂随机配件	电源线,机箱套件,测试报告,保证书,输出接头(高电流机型适用)

DS 全系列特点说明:

- ◆ 图型化 LCD 读值显示数据更清析易读。
- ◆ 高效率、体积小及高功率输出。
- ◆ 40A 高电流输出快速连接头。
- ◆ 数字键、功能键设定;有别于传统的电源供应器。
- ◆ 单机输出设定值具储存及呼叫功能(10 组)。
- ◆ Program 功能 (SCPI command only), 10 组 program 共 150 steps。
- ◆ 额外 5V/1A 电源输出,可供治具电路使用,不须另外再加电源。
- ◆ 精准的电压及电流量测。
- ◆ 过电压保护、过电流保护及按键保护功能。
- ◆ 串、并联模式(高电压机型仅有并联模式)。
- ◆ 串接模式, 最多可达 31 台(利用 RS485 接口)。
- ◆ 每一笔量测时间平均为 50mSec。
- ◆标准的 USB 接口/RS485 接口。
- ◆ 选购界面: GPIB+LAN。

3. 使用前注意事项

3.1 使用前附件确认

收到本机后,请依以下所示事项确认,以维护您的权益。

- 1. 产品外观是否破损、刮伤等不良现象。
- 2. 标准附件如 9. 附件一览表所列,请确认是否有遗 漏附件。

※ 若有上述之情形,请尽早告之本公司,以便立即为 您服务。

3.2 使用说明

本机为一精密仪器,为防止不当的操作以及任意的使用造成本机的损坏,请务 必先详读本说明书;且为维持准确度,请每一年送厂校验一次。

3.3 使用周围环境

1. 请勿将本机放置在多灰尘、多震动、日光直射及腐蚀气体下使用。并请在 周围温度 0~40°C,相对湿度 20%~80%的范围内使用,如果温度范围超过 40°C 时请先暂停使用,使其温度下降至正常温度后再使用,请务必检测以免温度过 高造成主机损坏。

2. 本机为防止内部温度上升,于背板内装有一组吹出式冷却风扇及前面板内侧有三组吸入式冷却风扇,所以请注意风扇周围的通风,使其与背后的墙壁或物品距离 10cm 以上,并请勿阻塞通风孔,以保持良好之准确度。

 本机虽已针对交流电源噪声污染进行防治并请注意系统接地是否确实,但 亦请尽可能在电源噪声污染小的环境下使用,在无法避免电源噪声污染的情形 下,请加装电源滤波装置使用。

3.4 保存

本机的保存温度范围为-10°C~70°C,相对湿度应为 80% RH 以内,并于不结露之 情况下,若长时间不使用,请以原包装或其它类似包装保存于无日光直射且干 燥的地方,以确保再使用时有良好之准确度。

3.5 电源电压

本机所使用额定交流电源为 100V~240V(详细规格请参考成品规格表)全区操作,在接上电源之前,请务必确认电源开关在 OFF 状态,检视电源线(含延长线) 之额定电压电流规格适当及其配接回路容量充足后牢靠连接。

警告: 本产品所附之电源线通过 safe 认可,满足本 机 额定电性规格之使用,如另行更换导线或加装延 长 线时,用户应确认其规格符合本机额定范围,以免 误装导致危害,及影响保固服务权益。

3.6 保险丝

本机为交换式电源供应器,安装于机体内部的电源保险丝,属于硬件多重保护 设计,正常操作时极不易断开,若有熔断现象代表机内其它故障而导致提前保 护,建议回厂检修。服务专线: (02)2662-5093 转 231

不建议使用者自行拆卸机壳更换保险丝,以免误装 导致危害,及影响保固服务权益。

3.7 预热时间

本机的所有功能在电源开启时同时动作,但为达到规格内之准确度,请预热 30 分钟以上。

3.8 测试终止

当测试已告一段落而不需再使用时,或是本机不再使用状态下,以及在使用中 而需离开时,请务必将电源开关切在 OFF 的地方,即关掉电源。当将面板电源 开关切于 OFF 后,本机内部风扇仍会继续动作数秒,进行内部电容放电以符合 safe 法规之要求,待放电完成,本机会自动关机,不需再进行任何开关的切换。

3.9 使用注意事项

A. 在多机串联操作时,每台 DC 电源供应器均需处于开机状态且输出为"ON", 若有任一台电源供应器处于关机状态或输出为"OFF",此时输出电流会流经未开 机电源供应器之输出旁路二极管,而致使二极管因过温损坏。

B. 多机并联输出时,不论 DC 电源供应器是否开机,输出电压的设定上限应以 并联者 min.额定电压为限。若设定超过 min.额定,较高的输出电压将回灌至较 小额定电压之供应器,如此便会造成内部零件损毁。

C. 输入电压低于满载电压额定值时,将使内部过温保护器动作而将输出截止。 若常态使用于 90%满以上进行测试,为确保测试流程能顺利完成,请确认输入 电压是否在规格内。

4. 面板说明

4.1 DS 全系列面板说明

- 4.1.1 前板说明
- (1) 电源开关:

电源开关在开启前请先参阅"使用前注意事项。

(2) 显示器:

为 192*32 Graphic LCD Module。

(3) 电流设定 (lset):

按下 (lset) 后可设定 Limit 电流。

(4) 电压设定 Vset:

按下Vset后可设定输出电压。

(5) Dot/Local •:

当作小数点之用,或是当进入 REMOTE 联机状态之后,按下此键也可以恢复 成 LOCAL 模式(本机操作模式),当进入 LOCK 画面按下此键也可以解除。

(6) ESC/CLR Esc :

清除数字的设定,或是跳至上一层画面。

(7) 数字 KEY ① ~ ⑨ :

用于快速输入电压,电流值或是在 Menu 画面中选择设定项目使用。 (8) Down/Right/Store ↓ :

此 Key 为复合 Key, 共有三种用途:

Down : 在 Menu 的设定中为 Down Key, 可使光标移至下一项次。

Right : 在 Output 的情况下,此 Key 为 Right Key,可使光标向右移动。

Store : 在 Memory 的设定下,此 Key 为 Store Key,可储存目前设定至所选择的 Memory。

(9) Up/Left/Recall (1):

此 Key 为复合 Key, 共有三种用途:

Up:在 Menu 的设定中为 Up Key,可使光标移至上一项次。

Left : 在 Output 的情况下,此 Key 为 Left Key,可使光标向左移动。

Recall : 在 Memory 的设定下,此 Key 为 Recall Key,可从所选择的 Memory 将设定值叫回。

(10) Display Display:

在 Menu 设定画面中,按下 Display Key 可回到主画面,或是切换显示功率及 负载阻值。

V = 36.000 V I = 15.000 A OFF 0.000 V 0.000 A

V = 36.000 V I = 15.000 A OFF **0.00 W 0.0** Ω

(11) Output On/Off:

控制电源输出 On/Off。

(12) 飞梭旋钮:

飞梭旋钮可以调整电压或电流(要先按下 (Enter) 让光标 出 现),在 Menu 设定 中是选项选择。

(13) Enter Enter :

设定电压电流值确认键或是在输出的情况下按下 Enter 可动态调整电压(CV mode)及电流(CC mode)。

(14) Mem (Mem) :

Memory 功能,按此键就进入内存画面,使用数字键来选 择那一组需储存、或呼叫功能,一共有十组可用,需搭配使用(呼叫 RECALL 键)、 (储存 STORE 键)。

(15) Menu Menu :

系统参数设定,设定选项共有9大项,按下数字可进入对应的设定画面:

1.SYSTEM SETTING	
2.OUTPUT SETTING	
3.PROTECTION	•

按下 → 可跳至下一页:

4.SERIES/PARALLEL ▲ 5.INFORMATION 6.SPECIAL TEST FUNC ▼

7.TIMER CONTROL 8.CALIBRATION 9.CHAIN SETTING

1. 系统设定(SYSTEM SETTING):

在 Menu 设定画面中按下数字键 1 可进入 SYSTEM SETTING 画面。

```
REMOTE CONTROL= USB
GPIB ADDRESS = 1
EXTERN CONTROL= OFF
```

REMOTE CONTROL: 选择传输接口 (USB/GPIB/ETHERNET) * USB 界面为虚拟 COM port, baud rate 为 57600 bps Data bit : 8, Parity check: none, Stop bit : 1 USB Driver 下载请至 http://www.bktw.com.tw/ *若进入 Remote 状态,则画面会出现 RMT 符号,如下图:

GPIB ADDRESS : 设定 GPIB ADDRESS (1~31) EXTERN CONTROL : 设定外部控制为电压控制(VOLT 0-10 V 或 0-5V),电阻控制(RES 0-5K),或是关闭(OFF)

IP CONFIG IP ADDRESS	= STATIC
KEY LOCK	= 0FF •

IP CONFIG : 设定 IP 取得方法,静态(STATIC)由用户 自行输入,或动态 (DHCP)由服务器分配 IP

IP ADDRESS: 若 IP CONFIG 设定为静态,则用户自行 在此输入四组 IP ADDRESS,若 是设定为 DHCP 则为显示所得到的 IP

KEY LOCK : 致能后离开设定画面会使所有 KEY 失去作用,除了解除此一状态的 • KEY 之外

*在主画面中按下组合键 1+ → 也可将 KEY LOCK. *若进入 KEY LOCK 状态,则画面会出现 LCK 符号,如下图:

	V = 36.000 V I = 15.000 A	0FF
	0.000 V 0.000 A	LCK
	BEEP = ON LCD BACKLIT = ALWAYS ON	•
	RECALL DEFAULT= NO	
BEEP	: 蜂鸣器开关	

LCD BACKLIT : LCD 背光控制(ALWAYS ON / 1,5,10,30 MIN(S) OFF) RECALL DEFAULT : 回复原厂设定

Ext 5V OUTPUT : 后背板 5V/1A 电源开关 POWER ON STATE: 机器电源开启之后的状态,可分为关机前状态(LAST),使 用者自定(USER)或是 OFF,若是设定为使用者自定则会跳至下一行设定输出电 压,电流及 OUTPUT 状态

2. 输出设定(OUTPUT SETTING):

在 Menu 设定画面中按下数字键 2 可进入 OUTPUT SETTING 画面。

VOLT LIMIT = 36.000 V CURR LIMIT = 40.000 A VOLT SLEW RATE = 2.4000 V/mS▼ CURR SLEW RATE = 2.5000 A/mS▲ CONNECTOR DROP = DISABLE EXT FULL VOLT = 10 V

VOLT LIMIT	:	电压 max.设置值限制
CURR LIMIT	:	电流 max.设置值限制
VOLT SLEW RATE	:	电压上升/下降斜率
		(DS3640-MO : 0.01 ~ 2.4 V/mS)
		(DS6024-MO : 0.01 ~ 3 V/mS)
		(DS8018-MO : 0.01 ~ 3.2 V/mS)
		(DS10014-MO : 0.01 ~ 3.3 V/mS)
		(DS15010-MO : 0.01 ~ 1V/mS)
		(DS30052-MO : 0.01 ~ 3.3V/mS)
		(DS60026-MO : 0.01 ~ 6.6V/mS)
CURR SLEW RATE	:	电流上升/下降斜率
		(DS3640-MO : 0.01 ~ 2.5 A/mS)
		(DS6024-MO : 0.01 ~ 1.2 A/mS)
		(DS8018-MO : 0.01 ~ 0.72 A/mS)
		(DS10014-MO : 0.01 ~ 0.48 A/mS)
		(DS15010-MO : 0.01 ~ 0.104A/mS)
		(DS30052-MO : 0.01 ~ 0.0.052A/mS)
		(DS60026-MO : 0.01 ~ 0.026A/mS)
CONNECTOR DROP	:	启动/关闭连接器压降补偿功能
EXT FULL VOLT	:	设定外调输入满刻度电压(10V / 5V)

3. 保护设定(PROTECTION)

在 Menu 设定画面中按下数字键 3 可进入 PROTECTION 画面。

OVP = OFF	SET =	38.000	۷	
0CP = 0FF	SET =	42.000	Α	
OPP = OFF	SET =	1440.000	W	▼

OVP: 启动/关闭过电压保护 SET: 设定过电压保护点

- OCP: 启动/关闭过电流保护 SET: 设定过电流保护点
- OPP: 启动/关闭过功率保护 SET: 设定过功率保护点

CV TO CC: 启动/关闭定电压转换成定电流保护

CC TO CV: 启动/关闭定电流转换成定电压保护

4. 串/并联设定(SERIES/PARALLEL)

在 Menu 设定画面中按下数字键 4 可进入 SERIES/PARALLEL 画面。

SELECT MODE = OFF MASTER/SLAVE = MASTER

SELECT MODE : 选择串并联模式 MASTER/SLAVE : 设定主(MASTER)/从(SLAVE)关系详细设定方式请参阅 5.8 串 /并联设定

5. 机器信息(INFORMATION)

在 Menu 设定画面中按下数字键 5 可进入 INFORMATION 画面。 DS 尾随号码会随客户购买机型不同变换

> MOTECH INC. DS 3640 PROGRAMMABLE DC SOURCE F/W VERSION : 1.00

6. 特殊功能(SPECIAL TEST FUNC)

在 Menu 设定画面中按下数字键 6 可进入 SPECIAL TEST FUNCTION 画面。

1.CURRENT COUNTER TEST 2.PROGRAM MODE

6.1 电流计数功能(CURRENT COUNTER TEST)按下数字键 1 可进入 CURRENT COUNTER TEST 画面。

> V= 10.00V I= 1.00A Ib= 0.00A OFF 00 : 00 : 000.0 ms

详细设定方式请参阅 5.10 电流计数功能

6.2 编程执行模式(PROGRAM MODE)按下数字键 2 可进入 PROGRAM MODE 画面。

在此模式之下,必须要由计算机端传送编辑的步骤经由 USB 或是 GPIB 接口进入 单机,再使用 OniOff 键来执行经由 SCPI command 所编程好的 Program steps,你 也可以自行设定 PROGRAM NUMBER。

7. 计时控制(TIMER CONTROL)

在 Menu 设定画面中按下数字键 🚺 可进入 TIMER CONTROL 设定画面。

TIMER : 启动/关闭 TIMER 功能

TIME : 设定 OUTPUT ON 的时间 (Max : 999Hr 59Min 59Sec)

8. 校正功能(CALIBRATION)

在 Menu 设定画面中按下数字键 ⑧ 可进入 CALIBRATION 画面。

PLEASE KEYIN PASSWORD:_

8.1 设备需求

1. 五位半 DVM(HP34401A) 一台。

2. 电流校正治具一组(100A/10mΩ)。

8.2 校正项目与步骤

8.2.1 VOLTAGE CALIBRATION

A. 将 DS 全系列电源供应器输出端接至 DVM(如图一), DVM 选在 DC 电压文件位, 开启 DS 全系列电源供应器, 等进入主画面后按下 Menu, 选项至"8.Calibration", 输入密码"13579"便可进入以下校 正主画面(选项 1. 2. 3):

CALIB VOLT Hi = XX.XXXX V

C. 依 DVM 所显示的电压值,填入相对应的档位并按下 Enter 键,若各电压文件 位 DVM 读值与下表不符合,则需检查硬件是否正常

机型	檔位	设定值	读回值范围
	Lo	1.8V	1.5 ~ 2.0 V
	MIDL	12V	10 ~ 13 V
053640-1010	MIDH	24V	21 ~ 25 V
	Hi	32.4V	31 ~ 34 V
	Lo	3V	2.4 ~ 3.6 V
	MIDL	20V	18 ~ 22 V
D36024-IVIO	MIDH	40V	36 ~ 44 V
	Hi	57V	53 ~ 61V
	Lo	4V	3.6 ~ 4.4 V
	MIDL	26V	23.5 ~ 28.5 V
D28018-IVIO	MIDH	53V	48 ~ 58 V
	Hi	76V	69 ~ 83 V
	Lo	5V	4.5 ~ 5.5 V
DS10014 MO	MIDL	35V	29.7 ~ 36.3 V
DS10014-IVIO	MIDH	66V	59 ~ 72 V
	Hi	95V	85 ~ 104 V
	Lo	7.5V	5 ~ 8.25V
	MIDL	49.5V	44.55 ~ 54.45V
D212010-IVIO	MIDH	99V	89.1 ~ 108.9V
	Hi	142.5V	128.25 ~ 156.75V
	Lo	15V	5 ~ 16.5V
	MIDL	99V	89.1 ~ 108.9V
DS30052-IMO	MIDH	198V	178.2 ~ 217.8V
	Hi	285V	256.5 ~ 313.5V
	Lo	30V	5 ~ 33V
	MIDL	198V	178.2 ~ 217.8V
	MIDH	396V	356.4 ~ 435.6V
	Hi	570V	513.0 ~ 627.0V

D. 在 Hi 檔位按下 (Enter) 后会将校正值存在 FLASH 并回到校正主画面(选项

1. 2. 3).

8.2.2 OVP CALIBRATION

A. 在校正主画面下按下 2 进入 OVP 校正画面

CALIB OVP Lo = ► Start CALIB OVP Hi =

B. 按下 Enter 进行 Low 文件位的 OVP calibration 程序

CALIB OVP Lo = ► Calibrating..... CALIB OVP Hi =

C. 完成后会跳至 Hi 檔位

CALIB OVP Lo = \blacktriangleright OK CALIB OVP Hi = \blacktriangleright Start

D. 再按下 Enter 进行 High 文件位的 OVP calibration 程序

CALIB OVP Lo = ► OK CALIB OVP Hi = ► Calibrating......

E. 完成后会将校正值存入 FLASH, 并跳回校正主画面(选项 1. 2. 3)

F. 若 Start 开始后十秒仍没有完成,则需检查 OVP 电路是否正常

8.2.3 CURRENT CALIBRATION

A. 将 DS 全系列电源供应器输出端二端接至电流治具二端,再将 DVM 接至电流 治具上的 Sensor 端以量测 DC 压降(如图二),在校正主画面下按下 3 以进入 Current calibration 画面

B. 首先先输入电流量测治具的电流转换电压的转换参数(current shunt 的阻值, 单位为 mΩ)。

依 DVM 所显示的电压值,直接填入相对应的档位并按下 Enter 键。

图二

FIX. PARAMETER = XX.XXX CALIB CURR Lo = XX.XXX mV CALIB CURR MIDL= XX.XXX mV

CALIB CURR MIDH= XXX.XXX mV CALIB CURR Mi = XXX.XXX mV

C. 各校正档位值经转换参数转换成实际电流后,电流值与容许误差表不符合,则需检查硬件是否正常。

机型	檔位	设定值	读回值范围
DS3640-MO	Lo	0.1A	0 ~ 0.5 A
	MIDL	13A	11 ~ 14 A
	MIDH	26A	23 ~ 27 A
	Hi	38A	34 ~ 39 A
	Lo	0.06A	0 ~ 0.5 A
	MIDL	7.8A	6.6 ~ 9 A
030024-1010	MIDH	15.6A	14 ~ 17.2 A
	Hi	22.8A	21 ~ 24.6 A
	Lo	0.045A	0~0.1 A
DS9019 MO	MIDL	5.9A	5.3 ~ 6.5 A
038018-1010	MIDH	12A	10.8 ~ 13.2 A
	Hi	17A	15.3 ~ 18.7 A
	Lo	0.03625A	0~0.1 A
DS10014 MO	MIDL	4.7A	4.2 ~ 5.2 A
D310014-WO	MIDH	9.5A	8.55 ~ 10.45 A
	Hi	13.7A	12.33 ~ 15.07 A
	Lo	0.5408	0.04 ~ 0.5949A
	MID1	1.3697	1.2327 ~ 1.5067A
DS15010-MO	MID2	4.16	3.744 ~ 4.576A
	MID3	6.9368	6.2431 ~ 7.6305A
	Hi	9.88	8.892 ~ 10.868A
	Lo	0.2704	0.02 ~ 0.2974A
	MID1	0.6812	0.6131 ~ 0.7493A
DS30052-MO	MID2	2.08	1.872 ~ 2.288A
	MID3	3.468	3.1212 ~ 3.8148A
	Hi	4.94	4446 ~ 5.434A
	Lo	0.1352	0.01 ~ 0.1487A
	MID1	0.3424	0.3082 ~ 0.3766A
DS60026-MO	MID2	1.04	0.936 ~ 1.144A
	MID3	1.7342	1.5608 ~ 1.9076A
	Hi	2.47	2.223 ~ 2.717A

D. 在 Hi 檔位按下 ENTER 后会将校正值存在 FLASH 之中。 8.2.4 CONNECTOR DROP CALIBRATION(暂不提供) 8.2.5 EXTERNAL VOLTAGE CALIBRATION(暂不提供) 8.2.6 EXTERNAL CURRENT CALIBRATION(暂不提供)

9. 串接控制设定(CHAIN)

在 Menu 设定画面中按下数字键 9 可进入 CHAIN SETTING 画面。

CHAIN ON/OFF = OFF CHAIN ADDRESS = 1

CHAIN ON/OFF : 启动/关闭串接模式

CHAIN ADDRESS : 设定地址(1-31), 详细设定方式请参阅 5.12 串接功能

4.1.2 后板说明

(16) 散热风扇:

会依照内部温度的大小,来调整风扇的转速,是智能型的风扇设计。

(17) 电源输出端:

请依照规格标示,并注意其正、负端极性。

(18) RMT / LCL Sense:

Remote Sense 状态,具有电压补偿的功能。接线方法如下: +Sense 和 输出正端接至待测物的正端; -Sense 和输出负端接至待测物的负端; 此 时的接法可以补偿线路的传导损 失(max.补偿电压为 2V)。

(19) LAN(选配):

ETHERNET 界面。

(20) GPIB(选配):

GPIB 界面。

(21) AC 电源输入:

电源连接用插座,适用于 100V~240V。

(22) 接地点:

接大地用。

(23) 5V/1A Output:

本机提供另一组定电压输出电源,max.电流为1安培,可由系统 设定开关。

(24) USB(标配):

USB 传输接口。

(25) EXT CTL(高电压机型无此项功能):

本机提供外部电压/电阻调整输出功能,由系统设定中选择,一组 控制电压另一组控制电流,外部电压范围选择请参考**输出设定** (OUTPUT SETTING)有 0~10V 或是 0~5V 对应

机型	电压/电阻	电压/电阻	电压输出	电流输出
	0-10V/0-5K		0 – 36V	
D33040-IVIO		0-10V/0-5K		0 – 40A
	0-10V/0-5K		0-60V	
DS6024-IVIO		0-10V/0-5K		0 – 24A
	0-10V/0-5K		0-80V	
D28018-IVIO		0-10V/0-5K		0 – 18A
DS10014-MO	0-10V/0-5K		$0 \sim 100 V$	
		0-10V/0-5K		0-14.4A

(26) RS485:

串并联或多台串接时,沟通及同步讯号使用之接口。

(27) RMT / LCL Sense 防护罩:

仅配备于 DS6024-MO/DS8018-MO/DS10014-MO/DS15010-MO/ DS30052-MO/DS60026-MO 机型

警告: RMT/LCL SENSE 功能未启用时,防护罩应为 遮蔽状态 而勿擅自拆卸,避免触电等危害发生。

(28) 电源输出端防护罩:

仅配备于 DS6024-MO/DS-8018-MO/DS10014-MO/DS15010-MO/ DS30052-MO/DS60026-MO 机型

> 警告: 本产品根据 safe 规范设计并测试合格, 为确保产品安 全之一致性,使用者视现场情况 装配直流输出线后,必须 遵照说明书建议装妥 固定连接片,如未接输出线时应将防 护罩盖上 并以螺丝固定,以免触电等危害发生。

5. 操作说明

5.1 设定电压

按下 (Vset)键,再按数字键直接输入设定的电压,最后按 Enter 键确认,电压设定值就会直接更改完成。

5.2 设定电流

按下 (set) 键,再按数字键直接输入设定的电流,最后按 Enter 键确认,电流设 定值就会直接更改完成。

5.3 过电压保护 OVP

按 Menu 键,进入 Configuration 画面,再按 ③ (PROTECTION)进入 PROTECTION 设定画面,将 OVP 选项利用飞梭旋钮设定为 ON,按下 Enter 键确认后光标会移 至右方设定值,输入欲设定之值即可。

OVP = ON	SET =	38.000	۷	
OCP = OFF	SET =	42.000	A	
OPP = OFF	SET =	1440.000	W	▼

5.4 过电流保护 OCP

按 Menu 键,进入 Configuration 画面,再按 3 (PROTECTION)进入 PROTECTION 设定画面,将 OCP 选项利用飞梭旋钮设定为 ON,按下 Enter) 键 确认后光标会移至右方设定值,输入欲设定之值即可。

OVP = ON	SET =	38.000	۷	
OCP = ON	SET =	42.000	Α	
OPP = OFF	SET =	1440.000	W	▼

5.5 电压输出

设定完所需之电压,电流及保护点之后按下 On/Off 键来输出电压,并可由表头 得知目前设定值及实际值。

V = 36.000 V	I = 15.000 A	C٧
35.999 V	0.000 A	

5.6 电压输出时可由飞梭旋钮控制

当电压已经输出时,可以由飞梭旋钮来直接控制电压的增减。步骤如下:当电压已经输出时,按下 Enter 键,此时光标会出现,再按 个 或 ↓ 来左右移动光标并转动飞梭旋钮就可以增减电压,此功能可以让你实时观看电压的变化。

V = 36.000 V I = 15.000 A

5.7 定时器功能

在系统参数第七项设定定时器功能为 ON 时,则启动定时器功能,设定好时间 后回到主画面,在设定完电压电流后按下 On/Off 键输出,此时画面会出现 Timer 倒数,倒数至时间为 0 后会自动将输出关闭.

5.8 串/并联设定

DS 全系列电源供应器使用串/并联模式(max 4 台),可大幅度提高供电的能力。 在 4 台 DS3640-MO 并联模式下可提供 36V/160A,在 4 台 DS10014-MO 串联模 式下可提供 400V/14.4A,

- 注意: 1. 不可串/并联模式并行。串/并联启动后将关闭串接功能。
 - 2. DS15010-MO / DS30052-MO / DS60026-MO 高电压机型不可使用串联 模式

5.8.1 并联设定

DS 全系列电源供应器使用四台并联时, 接线如下图所示:

接线完成后,选定一台为 Master,另三台为 Slave A, Slave B, Slave C,必须先 设定 Slave 之状态再设定 Master,使 Master 可以在 Slave 都设定完成 状态下去搜寻所有的 Slave,以达成控制.

设定 Slave 的方式为在主画面按下 Menu → → 4 (SERIES/PARALLEL) 进入串并联设定选项,首先选择并联模式 (SCPI command 为 "PS : MODE PARALLEL"),按下 Enter 后选择 SLAVE A (SCPI command 为 "PS : TYPE SLAVEA "),再将其他二台依上述方法设定为 SLAVE B 及 SLAVE C,如下图所示:

SELECT MODE = PARALLEL MASTER/SLAVE = SLAVE A

设定 Master 的方式为在主画面按下 Menu → → 4 (SERIES/PARALLEL)进 入串并联设定选项,首先选择并联模式 (SCPI command 为 "PS : MODE PARALLEL"),按下 Enter 后选择 MASTER (SCPI command 为 "PS : TYPE MASTER "),按下 Enter 后 Master 会去搜寻所有的 Slave,如下图所示:

> SELECT MODE = PARALLEL MASTER/SLAVE = MASTER CHECKING FOR SLAVE...

若接线正确则会出现:

SELECT MODE = PARALLEL MASTER/SLAVE = MASTER FOUND SLAVE : A B C

Slave 在收到 Master 的控制命令后会锁定在 SLAVE 的画面上,只能由 Master 控制,无法单机操作,如下图所示:

MODE : PARALLEL ERR : NONE SLAVE A

若要解除此一状态,可按 • (LCL)进入串并联设定模式来取消串并联 (请 勿在串并联输出的状态下取消,会使得 Master 通讯失败而出现错误讯息)或是将 Master Device 的串并联模式设定为 OFF 也会使 Slave Device 回到本机状态. 设定完成后回到主画面,即可经由操作 Master device 来达成并联输出.

5.8.2 串联设定(适用于高电流机型)

DS 全系列电源供应器使用四台串联时,接线如下图所示:

接线完成后,选定一台为 Master, 另三台为 Slave A, Slave B, Slave C, 必须先 设定 Slave 之状态再设定 Master, 使 Master 可以在 Slave 都设定完成的状态下 去搜寻所有的 Slave, 以达成控制.

设定 Slave 的方式为在主画面按下 Menu → → 4 (SERIES/PARALLEL) 进入串并联设定选项,首先选择串联模式 (SCPI command 为 "PS: MODE SERIES"),按下 Enter 后选择 SLAVE A (SCPI command 为 "PS: TYPE SLAVEA"), 再将其他二台依上述方法设定为 SLAVE B 及 SLAVE C,如下图所示:

SELECT MODE = SERIES MASTER/SLAVE = SLAVE A

设定 Master 的方式为在主画面按下 Menu → → 4 (SERIES/PARALLEL) 进入串并联设定选项,首先选择串联模式 (SCPI command 为 "PS : MODE SERIES"),按下 Enter 后选择 MASTER (SCPI command 为 "PS : TYPE MASTER "),按下 Enter 后 Master 会去搜寻所有的 Slave,如下图所示:


```
SELECT MODE = SERIES
MASTER/SLAVE = MASTER
CHECKING FOR SLAVE...
```

若接线正确则会出现:

SELECT MODE = SERIES MASTER/SLAVE = MASTER FOUND SLAVE : A B C

Slave 在收到 Master 的控制命令后会锁定在 SLAVE 的画面上,只能由 Master 控制,无法单机操作,如下图所示:

若要解除此一状态,可按 • (LCL)进入串并联设定模式来取消串并联 (请 勿在串并联输出的状态下取消,会使得 Master 通讯失败而出现错误讯息)或是将 Master Device 的串并联模式设定为 OFF 也会使 Slave Device 回到本机状态.

设定完成后回到主画面,即可经由操作 Master device 来达成串联输出.

5.8.3 串/并联错误讯息

若 RS485 接线错误或是讯号不正确则 Master 在搜寻 Slave 画面时会出现:

SELECT MODE = PARALLEL MASTER/SLAVE = MASTER FOUND SLAVE : NONE

若设定错误,设定成二台以上的 Master 则会出现:

若设定错误,其中一台设定成不同的串并联模式,则会出现:

SELECT MODE = PARALLEL MASTER/SLAVE = MASTER ERROR-MODE,PLEASE CHECK AGAIN

完成设定后,若是 Master 在控制 Slave 的过程中又发生通讯不良的状态,则 Master 会出现错误画面,如下图:

SLAVE A COMMUNICATION ERROR!!!

完成设定后,若是 Slave 在收到 Master 送出的输出命令后,却没有收到同步讯 号,则会出现下列二种错误讯息,一是没有收到同步输出的讯号(SYNC ON)另 一则为没有收到同步停止输出的讯号(SYNC OFF),如下二图所示:

5.9 外部模拟介面

高电流机型后面板有 EXT CTL 端口,高电压后面板有 DB25 模拟接口连接器,可用于模拟控制。

高电流机型

模拟介面脚位图(Analog Interface Pin Assignmen)

高电压机型 DB25 介面脚位图

No	脚位名称	I/O	No	脚位名称	I/O
1	Enable +	Ι	14	Enable – (Common)	
2	GND (Common)		15	Shut-Off	Ι
3	GND (Common)		16	Power OK	0
8	Local/Analog		21	Local/Analog State	0
9	Voltage Program	Ι	22	GND (Common)	
10	Current Program	I	23	GND (Common)	
11	Voltage Monitor	0	24	Current Monitor	0
12	GND (Common)		25	Parallel	0
13	CV/CC	0			

输出电压或输出电流可由连接到此连接器上相应引脚的外部电压源或电阻器控制。外部电压的范围可以是 0~10 VDC 或 0~5 VDC,外部可变电阻的范围可以为 0~10 kΩ 或 0~5 kΩ. 此外,用户可以通过读取模拟接口连接器的监控引脚来 监控输出状态

DS 全系列电源供应器提供外部电压/电阻控制输出,可利用外加电源(0~10 V 或是 0~5 V)或是外加可变电阻(0~5 K)来控制电压及电流的输出,接线方式如下图所示:

并于系统设定中选定外部电压控制或是外部电阻控制,但由于外部电路使用 12 bit D/A,所以电压电流分辨率会不同,故画面会如下图所示 (精度至 10mV):

$$V = 36.00 \quad V \quad I = 40.00 \quad A \quad OFF \\ 0.00 \quad V \quad 0.00 \quad A \\ \end{array}$$

PS:此功能允许最快的变化间隔时间为 0.5 秒!

功能(Functions)

起用/禁用外部控制(Enabling/Disabling External Control)

按下列流程启用外部控制:

从菜单中选择 Menu → → 6 (SPECIAL TEST FUNC) → 2

(EXTERNAL CONTROL),将 EXTERN ENABLE =设为 ACTIVE,如下图所示,必须 在执行所有功能(即启用+/-、关闭、本地/模拟、电压/电流程序、电压/电压监 视器等)

EXTERN MONITOR= 10V EXTERN SHUT-OFF= OFF / LOW EXTERN ENABLE=. ACTIVE.

启用+/-(Enable +/-)

要控制电源输出或前输出,请按 Onloff 键,要配置其功能,从菜单中选择 Menu $\rightarrow \downarrow \rightarrow 6$ (SPECIAL TEST FUNC) $\rightarrow 2$ (EXTERNAL CONTROL),转到菜单的第二页,屏幕将显示如下:

SET ENABLE +/- TO = A MODE

A MODE:

这允许 On/Off 键对输出启用或禁用。

当 PIN1 与 PIN14 开路时, 按 On/Off)键将无法开/关输出,电源输出将保持关闭, 屏 幕将显示 ENA

V = 300.00 V	I = 1.000 A	OFF
0.00 V	0.000 A	ENA

当 PIN1 与 PIN14 短路时, 按 On/Off)键将允许开/关输出, 如果屏幕显示 ENA, 可按 Esc)键可将其消除

B MODE:

这允许使用模拟接口 PIN1 与 PIN14 启用或禁用电源的输出。 此模式将禁用输出按钮。 当 PIN1 与 PIN14 开路时, 输出将断开(OFF)。 当 PIN1 与 PIN14 短路时, 输出将会接通(ON)。

			Output	
EXTERN	Enable	+& 111	On/Off	—
ENABLE	+/Enable -	输出	button	显不

NOT ACTIVE	Not Active	On		
(by Default)				
ACTIVE	Opened	Off	Disabled	ENA
(A Mode)	Shorted	On/Off	Enabled	
ACTIVE	Opened	Off	Disabled	
(B Mode)	Shorted	On	Disabled	

当 A 模式要改用 B 模式前, 要先把 EXTERN ENABLE 改为 NOT ACTIVE (未激活) 以 禁用模拟控制, 然后再切换到 B MODE。然后, 退出菜单后确认屏幕不显示 ENA, 在返回菜单前将 EXTERN ENABLE 重置为 ACTIVE。

Shut-Off

PIN15 可用于关闭电源的输出,由输入触发信号控制。输出随着触发器的 下降沿或上升沿而关闭。从菜单中选择 Menu → \rightarrow \rightarrow 6 (SPECIAL TEST FUNC)→ 2 (EXTERNAL CONTROL),选择 OFF/LOW (用于下降沿 触发)或 ON/LOW (用于上升沿触发)。

降沿触发 (Falling-edge trigger)

EXTERN MONITOR= 10V EXTERN SHUT-OFF= OFF / LOW EXTERN ENABLE= ACTIVE

升沿触发 (Rising-edge trigger)

EXTERN MONITOR= 10V EXTERN SHUT-OFF= ON / LOW EXTERN ENABLE= ACTIVE

当 Shut-Off 发生时,输出将立即关闭,屏幕将显示 SO 如下图所示。要再次启用输出,首先将引脚的输入电压设置回原始电压设置(下降沿触发设置回高电位(5V)和上升沿触发设置回低电位(0V))。然后,按 Esc 键(停用 SO 状态),然后再次按下 On/Off 按钮以启用输出。

V = 300.00 V	I = 1.000 A	OFF
0.00 V	0.000 A	SO

注意:只有当电源接收到边沿触发时,才能关闭。将该引脚保持在高电平或低 电平不会触发关机。

EXTERN ENABLE (menu config.)	EXTERN SHUT-OFF (menu config.)	Shut-Off (pin 15)	输出	显示
NOT ACTIVE	OFF / LOW	NOT ACTIVE	On	无 显示
(by Default)	ON / LOW	NOT ACTIVE	On	无 显示
	OFF / LOW	High-to-Low	Off	SO
ACTIVE	ON / LOW	Low-to-High	Off	SO

CV/CC

PIN 13 可用于监控电源输出模式。在 CV 模式下, PIN13 将输出高电位(5V), 在 CC 模式下输出低电位(0V)。

CV/CC 电位	输出模式	显示
High (5V)	恒压	CV
Low (OV)	恒流	CC

本地/模拟(Local/Analog)

PIN 8 可用于选择电源输出的控制模式(本地或模拟)。当该 PIN 的输入命令处于高电平(或打开)时,控制模式将为本地。当该 PIN 的输入命令处于低电平(或连接到公共 GND)时,控制模式将为模拟。在模拟模式下,电压和电流的设置和测量分辨率将低于本地模式。参见下图作为示例。

V = 300.00 V	I = 1.000 A	OFF
0.00 V	0.000 A	

模拟控制(Analog Control)

V = 300.0 V	I = 1.00 A	OFF
0.0 V	0.00 A	

EXTERN ENABLE	Local/Analog pin state	Local/Analog pin state	сссс
NOT ACTIVE (预设值)	NOT ACTIVE	Local	无 显示
	High (5V)	Local	
ACTIVE	Low (0V)	Analog	

本地/模拟状态(Local/Analog State)

PIN 21 可用于指示电源的电流输出控制模式(本地或模拟状态)。在本地 状态下,该 PIN 将输出高位(5V),在模拟状态下,该引脚将输出低电位 (0V)信号。

Local/Analog pin State	输出控制	显示
High (5V)	Local	
Low (0V)	Analog	无 显示

Power OK

PIN 16 可用于指示电源中是否存在故障状况。正常无故障时该 PIN 将输出高电位(5V)。当发生故障时该 PIN 将输出低电位(0V)。

故障条件定义如下:

- 1. 过电压保护(OVP)
- 2. 过电流保护(OCP)
- 3. 过热保护(OTP)

- 4. 交流线路故障(AC Line Failure)
- 5. 启用信号(Enable Signal)
- 6. 关闭信号(Shut-Off Signal)
- 7. 远程故障(Remote Failure)
- 8. 输出关闭(Output Off)

电压程序-电压模式(Voltage Program - Voltage Mode)

此功能允许您通过将外部直流电压连接到 PIN 9 来编程电压输出。要启用此功能, 输出控制必须处于模拟模式(Analog mode)。用于控制输出电压满量程的外部电压 范围可以在 0~10 V 或 0~5V 范围。从菜单中选择 Menu $\rightarrow \downarrow \rightarrow 6$ (SPECIAL TEST FUNC) $\rightarrow 2$ (EXTERNAL CONTROL),将 EXTERN VOLT CONTROL= 设置为 VOLT,如下图所示

> EXTERN VOLT CONTROL= VOLT EXTERN CURR CONTROL= VOLT EXTERN PROGRAM= 10 V / 10 K

在电压模式下,您可以通过 PIN 9 设置电源的电压输出值。

从菜单中选择 MENU6-SPECIAL TEST FUNC→2. EXTERNAL CONTROL,选择输入范 围 EXTERNAL PROGRAM 为 10 V / 10K(0~10V)或 5V / 5 K(0~5V)

> EXTERN VOLT CONTROL= VOLT EXTERN CURR CONTROL= VOLT EXTERN PROGRAM= 10 V / 10 K

电压程序-电阻器模式(Voltage Program - Resistor Mode)

此功能允许您通过将外部电阻连接到引脚9来编程电压输出。要启用此功能, 输出控制必须处于模拟模式(Analog mode)。用于控制输出电压满量程的外部电

阻范围可以在选择 0~10kΩ 之间或 0~5 kΩ 之间,从菜单中选择从菜单中选择 Menu → → → 6 (SPECIAL TEST FUNC)→ 2 (EXTERNAL CONTROL),将 EXTERN VOLT CONTROL=设置为 RES,如下图所示。

> EXTERN VOLT CONTROL= RES EXTERN CURR CONTROL= VOLT EXTERN PROGRAM= 10 V / 10 K

PIN9 和 GND(PIN22)可以与电阻器连接以设置电源的输出电压值。

从菜单中选择 Menu → → 6 (SPECIAL TEST FUNC)→ 2 (EXTERNAL CONTROL),选择输入电压范围 EXTERNAL PROGRAM 为 10 V / 10K(0~10kΩ)或 5V / 5 K(0~5kΩ)

EXTERN VOLT CONTROL= VOLT EXTERN CURR CONTROL= VOLT EXTERN PROGRAM= 10 V / 10 K

电流程序-电压模式(Current Program - Voltage Mode)

此功能允许您通过将外部直流电压连接到 PIN10 来编程电流输出。要启用此功能,输出控制必须处于模拟模式(Analog mode)。用于控制输出电压满量程的外部电压范围可以在 $0\sim10 \vee \odot 0\sim5 \vee 范围$ 。从菜单中选择 (Menu) $\rightarrow \downarrow \rightarrow 6$ (SPECIAL TEST FUNC) $\rightarrow 2$ (EXTERNAL CONTROL),将 EXTERNAL CURR CONTROL 设置为 VOLT,如下图所示。

EXTERN VOLT CONTROL= VOLT EXTERN CURR CONTROL= VOLT EXTERN PROGRAM= 10 V / 10 K

在电压控制下,您可以通过 PIN10 输入直流电压,以控制电源的输出电流值。

从菜单中选择 Menu → → 6 (SPECIAL TEST FUNC)→ 2 (EXTERNAL CONTROL),选择输入电压范围 EXTERNAL PROGRAM 为 10 V / 10K(0~10V)或 5V / 5 K(0~5V)

EXTERN VOLT CONTROL= VOLT EXTERN CURR CONTROL= VOLT EXTERN PROGRAM= 10 V / 10 K

电流程序-电阻模式(Current Program - Resistor Mode)

此功能允许您通过将电阻连接到 PIN10 来编程电流输出。要启用此功能,必须 将输出控制设置为模拟模式(Analog mode)。用于控制输出电压满量程的外部电 阻范围可设置为 0~10 kΩ 或 0~5 kΩ 范围,从菜单中选择 Menu $\rightarrow \downarrow \rightarrow \bullet$ 6 (SPECIAL TEST FUNC)→ 2 (EXTERNAL CONTROL),将 EXTERN CURR CONTROL=设置为 RES,如下图所示。

> EXTERN VOLT CONTROL= VOLT EXTERN CURR CONTROL= RES EXTERN PROGRAM= 10 V / 10 K

PIN10 和 GND(PIN23)可以与电阻器连接以设置电源的输出电流值。

从菜单中选择 Menu → → 6 (SPECIAL TEST FUNC)→ 2 (EXTERNAL CONTROL),选择输入电阻范围 EXTERNAL PROGRAM 为 10 V / 10K(0~10 K)或 5V / 5 K(0~5 K)

EXTERN VOLT CONTROL= VOLT EXTERN CURR CONTROL= VOLT EXTERN PROGRAM= 10 V / 10 K

电压监测(Voltage Monitor)

此功能允许您使用 PIN 11 和其中一个 GND(即 PIN 22)监控电压输出,该引脚可 以连接到数字电压表(DVM)。电源必须处于**模拟模式(Analog mode)**。可在 0~10 V 或 0~5 V 之间选择监控输出电压范围(反映电源输出电压的 0 至满量程)。下图 所示为连接至 DVM 的设置。

从菜单中选择 Menu → → 6 (SPECIAL TEST FUNC)→ 2 (EXTERNAL CONTROL), 选择输入监测电压范围 EXTERNAL MONITOR 为 10 V (0~10 V)或 5V (0 ~5 V)。

EXTERN MONITOR=	10V
EXTERN SHUT-OFF=	OFF / LOW
EXTERN ENABLE=	ACTIVE

电流监测(Current Monitor)

此功能允许您使用 PIN24 和其中一个 GND(即 PIN22)监控电压输出,该 引脚可以连接到数字电压表(DVM)。电源必须处于**模拟模式(Analog mode)**。监控输出电压范围(反映电源输出电流的0至满量程)可在0~ 10 V 或 0~5 V 之间选择。下图所示为连接到 DVM 的设置。

从菜单中选择 Menu → → 6 (SPECIAL TEST FUNC)→ 2 (EXTERNAL CONTROL),选择输入监测电流输出范围 EXTERNAL MONITOR 为 10 V (0~10 V) 或 5V (0~5 V)。

EXTERN MONITOR= 10V EXTERN SHUT-OFF= OFF / LOW EXTERN ENABLE= ACTIVE

5.10 电流计数功能

本功能提供 Breaker 或是 Fuse 熔断时间测试. 首先将待测物连接至输出端, 如下面所示:

操作步骤如下:

1. 在主画面按 Menu → ↓ → ⑥ (SPECIAL TEST FUNC) → 1 (CURRENT COUNTER TEST)进入电流计数功能画面

- 2. 按 (Vset)键,屏幕上 V 会闪烁,输入电压值(V) 后按 Enter)确定
- 3. 按 (lset) 屏幕上 | 会闪烁, 输入电流值(I) 后按 (Enter) 确定
- 4. 按两次 (lset) 键,屏幕上 lb 会闪烁,输入计时停止电流(lb) 后按 (Enter) 确定
- 5. 按下 OnlOff 输出,屏幕上时间便会开始计数,直至 Breaker 跳脱或 Fuse 熔 断至 lb 电流值为止

时间单位为 ms, min.计数单位为 100us, 最长计数时间为一个小时

*I 值请参考待测 Fuse/Breaker 的规格书内规定的额定电流值(例:快断型的 I 值为额定 电流值的 200%~250%),Ib 值约为额定电流值的 20%

*V 值要远大于 Fuse/Breaker 的 I 值与 Fuse/Breaker 内阻乘积值,否则有可能会造成 Fuse/Breaker 因电压不够大导致 I 值被限流,无法达到熔断/跳脱所须的电气能量

若按下 On/Off 后计数器没有动作,则是发生错误,二秒之后画面会显示错误状态,有下列三种情况:

A. Connector not ready

Connector 尚未连接或是 Breaker 没有拨到 ON 的位置,此时画面会闪烁错误提示,如下图:

TEST FAIL!! CONNECTOR NOT READY! 00:00:00:000.0 ms

B. Current setting too large

电流设定过大,输出尚未达到设定电流,Breaker 己跳开或是 Fuse 己烧断,此时画会闪烁错误提示,如下图:

TEST FAIL!! I SETTING TOO LARGE! 00 : 00 : 000.0 ms

C. Voltage setting too small

电压设定过小,输出电流无法达到设定电流,此时画会闪烁错误提示,如下 图:

TEST FAIL!! V SETTING TOO SMALL! 00 : 00 : 000.0 ms

5.11 Program 功能(SCPI command only)

DS 全系列电源供应器可提供 program step 功能, 共有 10 组 program, 150 个 step 可设定, 每组 program 不限定 step 数量, 但 10 组 program 加起来只能有 150 个 step, 每个 program 可设定 Repeat 次数, 每个 step 可设定电压, 电流, 输出时间(min.单位 50 ms), 设定范例如下(详细 SCPI command 请参阅 7.5.2 SCPI 指令副系统):

Example 1:

如欲输出上图波形,须依下列命令输入:

选择 program number PROG 1 清除 program 1 资料 PROG:CLF Repeat 次数为 0(1 则会做二次) PROG:RFP 0 设定 program 1 共有 8 个 step PROG:TOTA 8 选择 step 1 PROG:STFP 1 设定电流为1安培 PROG:STFP:CURR 1 设定电压为5伏持 PROG:STEP:VOLT 5 设定输出时间为 100 ms (单位为秒) PROG:STFP:ONT 0.1 PROG:STFP 2 选择 step 2 PROG:STEP:CURR 1 PROG:STEP:VOLT 10 PROG:STEP:ONT 0.1 选择 step 3 PROG:STFP 3 PROG:STEP:CURR 1 PROG:STEP:VOLT 15 PROG:STFP:ONT 0.1 **PROG:STEP 4** 选择 step 4 PROG:STFP:CURR 1 PROG:STFP:VOLT 20 PROG:STEP:ONT 0.1 选择 step 5 PROG:STEP 5 PROG:STEP:CURR 1 PROG:STEP:VOLT 15

选择 step 6
选择 step 7
选择 step 8
设定 NEXT program,0 为结束
储存 program 数据
选择 program 1
开始执行 program

Example 2:

如欲输出上图波形,须依下列命令输入:

PROG 2	选择 program number
PROG:CLE	清除 program 2 资料
PROG:REP 0	Repeat 次数为 0 (1 则会做二次)
PROG:TOTA 8	设定 program 2 共有 8 个 step
PROG:STEP 1	选择 step 1
PROG:STEP:CURR 2	设定电流为 2 安培
PROG:STEP:VOLT 20	设定电压为 20 伏持
PROG:STEP:ONT 0.5	设定输出时间为 500 ms (单位为秒)
PROG:STEP 2	选择 step 2
PROG:STEP:CURR 2	
PROG:STEP:VOLT 15	
PROG:STEP:ONT 0.5	
PROG:STEP 3	选择 step 3
PROG:STEP:CURR 2	
PROG:STEP:VOLT 20	
PROG:STEP:ONT 0.5	
PROG:STEP 4	选择 step 4
PROG:STEP:CURR 2	
PROG:STEP:VOLT 10	
PROG:STEP:ONT 0.5	
PROG:STEP 5	选择 step 5

PROG:STEP:CURR 1 PROG:STEP:VOLT 20 PROG:STEP:ONT 0.5 PROG:STFP 6 PROG:STEP:CURR 2 PROG:STEP:VOLT 5 PROG:STEP:ONT 0.5 PROG:STEP 7 PROG:STFP:CURR 2 PROG:STEP:VOLT 20 PROG:STEP:ONT 0.5 PROG:STEP 8 PROG:STEP:CURR 2 PROG:STEP:VOLT 0 PROG:STEP:ONT 0.5 PROG:NEXT 0 PROG:SAV PROG 2 PROG:RUN ON

选择 step 6

选择 step 7

选择 step 8

设定 NEXT program, 0 为结束 储存 program 数据 选择 program 2 开始执行 program

Example 3:

如欲在执行完 Program 1 后执行 Program 2 如上图波形,须依下列命令输入:

PROG 1 PROG:NEXT 2 PROG:SAV PROG 1 PROG:RUN ON 选择 program number 设定 next program 为 program 2 储存设定 选择 program 1 执行 program

5.12 串接功能(RS485)

DS 全系列电源供应器可利用 RS485 提供多台串接功能,共可串接 31 台(若超过 十台以上需在最后一台加上终端电阻 120Ω),如下图。串接完成后开机,进入 主画面按下 Menu → 9 将 CHAIN ON/OFF 设为 ON(此时会自动取消串并联功 能),并把各台设为不同的 Address (1~31),再利用 USB 线连结 PC 至任一台机 器上即可使用 **5.12.1 串接命令行表**中的命令进行多台控制。

5.12.1 串接命令行表

DS 全系列电源供应器所使用之串接命令皆以 ASCII 字符串传输且需在字符串后 方加上终止符(0x0A),每一笔数据传送后机器都会响应,例如传送询问命令则会 响应相对应的数值或是字符串,或是传送设定命令则会响应"OK",若是有错误 发生则会响应何种错误发生(见 5.12.2 错误回应列表),命令行表如下:

系统控制命令:

Command	mmand Description			
CADR	followed by address, which can be 1 to 31 and is used to access			
	the power supply			
CCLS	Clear status			
CRST	Reset command. Brings the power supply to a known state			
CIDN?	Returns the power supply model identification			
CREV? Returns the firmware version				
CSN? Returns the serial number				
CST?	Returns the device status			
CCLR?	Clear protect			

输出控制命令:

Command	Description		
CPV	Sets the output voltage value in Volts		
CPV?	ReaDS the output voltage setting		
CMV?	ReaDS the actual output voltage		
CPC Sets the output current value in Amperes			
CPC? ReaDS the output current setting			
CMC	ReaDS the actual output current		
CDVC?	Display voltage and current data		
COUT	Turns the output to ON or OFF		
COUT?	Returns the output On/Off status		
COV	Sets the OVP level		
COV?	Returns the OVP setting level		
COVP	Sets the OVP on/off		
COVP?	Returns the OVP on/off		
COC	Sets the OCP level		
COC?	Returns the OCP setting level		
COCP	Sets the OCP on/off		
COCP?	Returns the OCP on/off		
COP	Sets the OPP level		
COP?	Returns the OPP setting level		
COPP	Sets the OPP on/off		
COPP?	Returns the OPP on/off		
CMODE?	Returns the power supply operation mode		

同步控制命令:

Command Description								
GRST	Reset command. Brings the power supply to a known state							
GCLS	Clear status							
GCLR	Clear protect							
GPV	Sets the output voltage value in Volts							
GPC	Sets the output current value in Amperes							
GOUT Turns the output to ON or OFF								
GOV Sets the OVP level								
GOVP Sets the OVP on/off								
GOC Sets the OCP level								
GOCP	Sets the OCP on/off							
GOP	Sets the OPP level							
GOPP	Sets the OPP on/off							
举例:	举例:							
Q1. 如何读回地址 5 机器的 ID ?								
CADR 5 🗌	→ ОК							
CIDN?	→ B&K Precision.,DS3640-MO(此为机型编号,各机型编							
号均不相同),A1234567,1.13,0								
Q2. 如何设定地	址 7 机器的电压?							
CADR 7 🗌	→OK							
CPV 20 🗌	→ ОК							
Q3. 如何设定地	址 3 机器输出?							
CADR 3 🗌	→OK							
COUT 1	→ ОК							
Q4. 如何读回地	址1机器的电压读值?							
CADR 1 🗌	→ ОК							
CMV?	→ 10.001							
Q5. 如何设定所	有机器的电流?							
GPC 5 🗌	→No response							
Q6. 如何设定所	有机器输出?							
GOUT 1	$\Box \rightarrow$ No response							

5.12.2 错误回应列表

-

当 PC 传送错误命令或是讯号线链接有问题时,响应字符串如下表所列:

丁竹中	秋距
ОК	无错误
Time out	等待回应时间超时
Range error	输入值超出范围
Multi master	控制用的主机太多

5.13 RS485 控制

5.13.1 DS 全系列电源供应器 RS485 直接控制

Connector 脚位定义如下图:

命令格式如下:

Head	DA	SA	Len	Cmd	Data	Check	End
1 byte	n byte	1 byte	1 byte				

- Head:开头字串 0xAB(0xAB 是固定的)
- DA : 目地地地址 (广播命令为 0x90)

PS: 广播只对设置用的命令,不对查询用的命令

(目的地地址,也就是受控制机器的地址,例如要控制 ADDR:1,就是 0x01)

SA : 来源地址

(计算机端的 ADDRESS,只要不要跟机器冲突就可以了~随便你设定,范例 是下 0x02)

- Len : 总共 Cmd 与 Data 长度 (就是 Cmd+Data 长度 ,Cmd 长度都是 0x01,Data 长度的话就要看你的设定值(参考指令长度列表),若是询问指令, 当然就不需要 Data 长度)
- Cmd : 控制命令 (请查表 code 字段)
- Data : data length is base on command (LSB first) (参考注一,LSB 要排在前面)

Check: 1'完整的检查码 0xFF-(Head+DA+SA+Len+Cmd+Data)=Check

End : 结束字串 0x0A(0x0A 是固定的)

- 命令(†衣如下)	⋛行表如♪	: ۱
------------	-------	-----

1 1 1 2 2	44 11 1	
#define	CMD_QID	0x01 (内部设定用命令)
#define	CMD_CONTROL	0x02 (内部设定用命令)
#define	CMD_SETV	0x03 设定电压
#define	CMD_SETI	0x04 设定电流
#define	CMD_SETOVP	0x05 设定 OVP 电压
#define	CMD_SETOCP	0x06 设定 OCP 电流
#define	CMD_SETOPP	0x07 设定 OPP 功率
#define	CMD_SETOUTPUT	0x08 设定输出状态
#define	CMD_QCURR	0x09 询问输出电流值
#define	CMD_QVOLT	0x0A 询问输出电压值
#define	CMD_SETVSLEW	0x0B 设定电压的 Slew Rate
#define	CMD_SETISLEW	0x0C 设定电流的 Slew Rate
#define	CMD_SETOVPONOFF	0x0D 设定 OVP 功能是否启动
#define	CMD_SETOCPONOFF	0x0E 设定 OCP 功能是否启动
#define	CMD_SETOPPONOFF	0x0F 设定 OPP 功能是否启动
#define	CMD_ADR	0x10 设定 ADDRESS
#define	CMD_CLS	Ox11 清除 ERROR 状态

#dofino		0,12	法险促進业太
#uenne		UXIZ	
#define	CMD_RST	0x13	重新启动机器
#define	CMD_STB	0x14	询问机器状态
#define	CMD_IDN	0x15	询问机器型号
#define	CMD_REV	0x16	询问机器版本
#define	CMD_SN	0x17	询问机器序号
#define	CMD_QVI	0x18	同时询问输出电压电流
#define	CMD_QOUT	0x19	询问输出状态
#define	CMD_QOVP	0x1A	询问 OVP 设定值
#define	CMD_QOVPONOFF	0x1B	询问 OVP 状态
#define	CMD_QOCP	0x1C	询问 OCP 设定值
		0x1D	询问 OCP 状态
#define	CMD_QOCPONOFF	0v1F	询问 OPP 设定值
#define	CMD_QOPP	UVIL	同門の下反足區
#define	CMD_QOPPONOFF	0x1F	询问 OPP 状态
#define	CMD_QMODE	0x20	询问机器型号
#define	CMD_QSETV	0x21	询问设定电压值
#define	CMD_QSETI	0x22	询问设定电流值
#define	CMD_OK	0x40	回复 OK
#define	CMD_FAIL	0x41	回复FAIL

例: IDN (询问机型)

Head	DA	SA	Len	Cmd	Data	Check	End
0xAB	0x01	0x02	0x01	0x15		0x3B	0x0A

例: SETV 1 (设定电压)

Head	DA	SA	Len	Cmd	Data	Check	End
0xAB	0x01	0x02	0x05	0x03	0XE8,0x03,0x00,0x00	0x5E	0x0A

例: QSETV (读回设定电压)

Head	DA	SA	Len	Cmd	Data	Check	End
0xAB	0x01	0x02	0x01	0x21		0x2F	0x0A

指令长度列表如下:

// 设定的命令	设定的长度(cmd + data)
CMD_QID	1
CMD_CONTROL	2
CMD_SETV	5
CMD_SETI	5
CMD_SETOVP	5
CMD_SETOCP	5
CMD_SETOPP	5
CMD_SETOUTPUT	2
CMD_QCURR	1
CMD_QVOLT	1
CMD_SETVSLEW	5
CMD_SETISLEW	5
CMD_SETOVPONOFF	2
CMD_SETOCPONOFF	2
CMD_SETOPPONOFF	2
CMD_ADR	1
CMD_CLS	1
CMD_CLR	1
CMD_RST	1
CMD_STB	11
CMD_IDN,	1
CMD_REV	1
CMD_SN	1
CMD_QVI	1
CMD_QOUT	1
CMD_QOVP	1

CMD_QOVPONOFF	1
CMD_QOCP	1
CMD_QOCPONOFF	1
CMD_QOPP	1
CMD_QOPPONOFF	1
CMD_QMODE	1
CMD_QSETV	1
CMD_QSETI	1
CMD_QID	3
CMD_SETOUTPUT	2
CMD_QCURR	5
CMD_QVOLT	5
CMD_IDN	41
CMD_STB	8
CMD_REV	6
CMD_SN	17
CMD_QVI	9
CMD_QOUT	2
CMD_QOVP	5
CMD_QOVPONOFF	2
CMD_QOCP	5
CMD_QOCPONOFF	2
CMD_QOPP	5
CMD_QOPPONOFF	2
CMD_QMODE	2
CMD_QSETV	5
CMD_QSETI	5
CMD_OK	1
CMD_FAIL	2

6. 保護功能及错误讯息

6.1 过电压保护功能(OVP)

当过电压保謢功能被启动且量测电压大于保护电压时,机器便会进入过电压保 护模式(Over Voltage Protect)关闭输出电压电流,并出现以下画面,按下 Enter) 键可解除保护画面及蜂鸣器状态.

V = 36.000 V	I = 40.000 A	0FF
0.000 V	0.000 A	OVP

6.2 过电流保护功能(OCP)

当过电流保謢功能被启动且量测电流大于保护电流时,机器便会进入过电流保 护模式(Over Current Protect)关闭输出电压电流,并出现以下画面,按下 Enter) 键可解除保护画面及蜂鸣器状态.

6.3 过功率保护功能(OPP)

当过功率保護功能被启动且量测功率大于保护功率时,机器便会进入过功率保 护模式(Over Power Protect)关闭输出电压电流,并出现以下画面,按下 Enter 键可解除保护画面及蜂鸣器状态.

6.4 定电压保护功能(CV TO CC)

当定电压保護功能被启动且量测进入定电流模式(CC)时,机器便会进入定电压保护模式(CV TO CCProtect)关闭输出电压电流,并出现以下画面,按下 Enter 键可解除保护画面及蜂鸣器状态.

6.5 定电流保护功能(CC TO CV)

当定电流保謢功能被启动且量测进入定电压模式(CV)时,机器便会进入定电流保 护模式(CC TO CV Protect)关闭输出电压电流,并出现以下画面,按下 Enter)键 可解除保护画面及蜂鸣器状态.

6.6 过温度保护功能(OTP)

当机器侦侧到异常高温时,便会进入过温度保謢模式(Over Temperature Protect)关闭输出电压电流,并出现以下画面,按下 Enter 键或温度回复正常时可解除保护画面及蜂鸣器状态.

OTP ERROR !!!! TEMPERATURE IS OVER HEATING PLEASE CHECK AND TRY AGAIN.

6.7 过低压保护功能(ACD)

当机器侦测到输入 AC 电压过低时,机器便会进入过低压保护模式(AC Detect Low Protect)关闭输出电压电流,并出现以下画面,按下 Enter 键或输入 AC 电压恢复正常时可解除保护画面状态.

AC DETECT LOW !!!! LINE VOLTAGE IS UNDER SPEC. OR POWER SHUTDOWN.

6.8 输入值错误讯息

当使用者输入的值落在可接受的范围之外时,机器会显示范围错误(RANGE ERROR),并提供使用者正确的输入范围,按下 Enter 键后可重新输入.

R	ANGE ERROR	!!!!
MIN	RANGE :	0.000
MAX	RANGE :	36.000

7. 远程接口通信协议及封包模式

通信协议包括 B&K Precision 指令, SCPI 指令。

7.1 前言

SCPI 界面选择使你能够透过计算机的 IEEE-488.2 GPIB、USB 或 LAN 界面去操作 你的电源供应器,并允许远程程控和监控。

SCPI IEEE-488.2 版本支持多组的电源控制(允许控制最多 32 组电源)。

7.2 参数定义

Туре	Valid arguments
<boolean></boolean>	"ON"或 1,"OFF"或 0
<nr1></nr1>	IEEE-488.2 定义的数据格式 <nr1>,须为整数或 0,正整数与负</nr1>
	整数
<nrf></nrf>	IEEE-488.2 定义的数据格式 <nrf>,须为零、正和负浮点数</nrf>
<string></string>	单引号或双引号括起来的字符
<nl></nl>	新的一行,2 进码是 0x0Ah
<rtn></rtn>	返回(Return),2 进码是 0x0Dh
<end></end>	结束或识别

注: 所有命令 DS 应以<Rtn>和<NL>结尾。命令和参数之间应有空格。 例如,将 DS 全系列的 GPIB 地址设置为 10,命令行如下:

ADDR 10<Rtn><NL>

注: <NL>和<Rtn>未在以下示例和命令描述中显示。但是,用户在编程时应将它 们添加到每个命令的末尾。

7.3 错误/事件列表

SCPI 界面能够提供一个错误/事件清单。这个错误/事件清单可以多达 10 个。 我们可以经由 error ?指令以(先进先出)模式来读取系统里相关讯息。读取的动 作会清除掉错误/事件清单中的暂存空间中先前的数据,经由* CLS 指令来清除 所有错误/事件列表暂存记忆

错误 	叙述 	
-000	 无错误	
-001	命令错误	
-002	运行错误	
-003	查询错误	
-004	输入范围错误	
-005	并联/串联功能,	错误模式
-006	并联/串联功能,	主机太多(Multi-Master)
-007	并联/串联功能,	找不到从机(Slave)
-008	并联/串联功能,	从机1号通讯错误
-009	并联/串联功能,	从机 2 号通讯错误
-010	并联/串联功能,	从机 3 号通讯错误
-011	并联/串联功能,	输出打开时同步信号错误
-012	并联/串联功能,	输出关闭时同步信号错误

B&K Precision LPS & PPS 系列兼容的协议

_ 命令	描述
ADDRess	设置本机位址
ADDRess?	传回本机位址
BEEP	设置蜂鸣器:打开(1)或关闭(0)
CLR	清除保护状态
CURRent	设置电流
CURRent?	传回电流设置
ERRor?	传回错误信息
IOUT?	电流读回值
ISET	设置电流
ISET?	传回电流设置
LOCK	设置旋钮与键盘锁住:打开(1)或关闭(0)
MODEL?	传回机型号码
OCP	设置过电流保护:打开(1)或关闭(0)
OISET	设置 OCP 值
OISET?	传回 OCP 值
OPP	设置过功率保护:打开(1)或关闭(0)
OPSET	设置过功率保护值
OPSET?	传回 OPP 值
OUT	设置输出:打开(1)或关闭(0)
OVP	设置过电压保护:打开(1)或关闭(0)
OVSET	设置过电压保护值
OVSET?	传回过电压保护值
STATUS?	传回机器状态
VERsion?	显示版本号码
VOLTage	设置电压
VOLTage?	传回电压设置
VOUT?	电压读回值
VSET	设置电压
VSET?	传回电压设置

举例:

O1. 如何设定 GPIB 的地址? **ADDR 10 Q2.** 如何读回 GPIB 地址? ADDR? ADDRESS? Q3. 如何设定蜂鸣器? RFFP 1 **BFFP** off O4. 如何清除保护状态? CLR Q5. 如何读回错误讯息? FRR? Q6. 如何设置电压? VSFT 10 VOLT 3.3V **VOLTAGE 45** Q7. 如何读取电压设置值? VSFT? VOLT? **VOLTAGE?** Q8. 如何设置电流? ISFT 1.1 CURR 4.3022 CURRENT 0.250 Q9. 如何读取申流设定值? ISFT? CURR? CURRENT? Q10. 如何读取电压输出值? VOUT? Q11. 如何读取电流输出值? IOUT? Q12. 如何锁住按键及旋钮? LOCK 1 LOCK ON

 \rightarrow **地**址为10 → 传回 GPIB 地址 → 传回 GPIB 地址 打开 beep \rightarrow 关闭 beep \rightarrow → 清除保护状态 传回错误码 \rightarrow → 设置电压为 10V 设置电压为 3.3V \rightarrow \rightarrow 设置电压为 45V.因超出设置范 \rightarrow 围.所以设置失败 → 传回电压设置值 → 传回电压设置值 \rightarrow 传回申斥设置值 → 传回电流为 1.1A \rightarrow 传回电流为 4.3022A \rightarrow 传回电流为 250mA → 传回申流设置值 → 传回电流设置值 \rightarrow 传回电流设置值 \rightarrow return voltage output \rightarrow return current output \rightarrow 锁住按键及旋钮 锁住按键及旋钮 \rightarrow

O13. 如何读取机器型号? MODFL? 014. 如何设定 OVP 功能? OVP 1 OVP OFF O15. 如何设定 OVP 电压值? OVSET 38 Q16. 如何设定 OCP 功能? OCP 1 OCP OFF 017. 如何设定 OCP 电流值? **OISET 40** Q18. 如何设定 OPP 功能? OPP 1 OPP OFF Q19. 如何设定 OPP 功率值? **OPSET 1000** Q20. 如何设定输出? OUT 1 OUT OFF Q21. 如何读取状态值? STATUS? O22. 如何读取韧体版本? VFR? VFRSION?

→ 传回机型编号 → 启用 OVP → 禁用 OVP → 设置 OVP 值为 38 V → 启用 OCP → 禁用 OCP → 设置 OCP 值为 40 A → 启用 OPP \rightarrow 禁用 OPP → 设置 OPP 值为 1000 W → 打开输出 → 关闭输出 → 传回状态值 → 传回版本信息 → 传回版本信息

7.4 SCPI 相符合的信息

SCPI 可以完全符合所有 IEEE-488.2 和 SCPI 指令(1995)规范. 其中指令都是包含在 SCPI 指令(1995 第二册)规范里.

7.4.1 SCPI 常见指令

命令

说明

*CLS 清除状态(包含错误码)

*IDN? 回应: <Manufacturer>, <model>, <serial number>,

- <firmware type, & version>
- *RCL 从内存位置 0~9 读取设置
- *RST 重置机器的开机状态
- *SAV 1. 储存定义的参数
 - 2. 储存当前设置到内存位置 0~9

举例:

 Q23. 如何储存电压/电流的设定值到内存中?

 *SAV 5
 ==> 储存电流设置到内存位置 5

 Q24. 如何呼叫内存中电压/电流的设定值?

 *RCL 3
 ==> 从内存位置 3 读取设置

 Q25. 软件重置步骤如何设定?

 *RST

 Q26. 如何辨认仪器的型号?

 *IDN?

 Q27. 如何清除错误讯息?

*CLS

7.4.2 SCPI 指令副系统

ABORt	中止输出操作
FETCh	提取副系统
:CURRent?	回传取出的输出电流
:VOLTage?	回传取出的输出电压
MEASure	测量副系统
:CURRent?	回传测量的输出电流
:VOLTage?	回传测量的输出电压
MEMory	内存副系统
<nr1 ?=""></nr1>	选择或回传内存号码, 范围值为0~9
:VSET <nrf ?=""></nrf>	设置或回传电压值:
	0 – 36V for DS3640-MO
	0 – 60V for DS6024-MO
	0 – 80V for DS8018-MO
	0 \sim 100V for DS10014-MO
:ISET <nrf ?=""></nrf>	设置或回传电流值:
	0 – 40A for DS3640-MO
	0 – 24A for DS6024-MO
	0 – 18A for DS8018-MO

:SAVE **OUTput** <Boolean> ? :LIMit :VOLTage <NRf |?> :CURRent <NRf |?> :SR :VOLTage <NRf |?> :CURRent <NRf |?> :CURRent <NRf |?> :STATe? :PROTection :CLEar

PROGram

<NR1|?> :CLEar :ALL :NEXT <NR1|?> :REPeat <NR1|?> :RUN<Boolean|?> :SAV :STEP < Boolean|?> :CURRent <NRf|?> :ONTimet <NRf|?> :VOLTage <NRf|?> :TOTA[I] <NR1|?>

PROTection

? :CCCV <Boolean |?> :CLEar :CVCC <Boolean |?> :OCP <Boolean |?> :LEVel <NRf |?> :COPP <Boolean |?> :LEVel <NRf |?> 0-14.4A for DS10014-MO 储存副系统参数到内存 输出副系统 启用或禁用输出操作 回传输出状态

设置或回传电压限制值 设置或回传电流限制值

设置或回传电压斜率值 设置或回传电流斜率值 回传电流输出模式(CV or CC)

重至锁存(latched)保护

编程副系统

选择或回传内存号码, 范围值为 1~10 清除第 n 个编程的参数 清除全部编程的参数 设置或回传下一个编程号码(1~10,0 代表结束) 设置或回传重复时间(max.值 50000) 设置或查询编程开/关状态 储存编程参数 设置或回传步骤号码 设置或回传第 n 个步骤的电流设置 设置或回传第 n 个步骤的输出时间(0.050~20000 S) 设置或回传第 n 个步骤的电压设置 设置或回传第 n 个步骤的电压设置

保护副系统

回传保护状态 设置或回传 CC 到 CV 保护状态 重至锁存(latched)保护 设置或回传 CV 到 CC 保护状态 设置或回传 OCP 保护状态 设置或回传 OCP 值 设置或回传 OPP 状态

:OVP <boolean th="" ?:<=""><th>></th></boolean>	>
:LEVel <nrf ?=""></nrf>	

设置或回传 OPP 值 设置或回传 OVP 状态 设置或回传 OVP 值

PS

:MODE <OFF/0,PARALLEL/1,SERIES/2 |?> :TYPE <MASTER/0,SLAVEA/1,SLAVEB/2,SLAVEC/3 |?>

并联/串联副系统

设置或回传并联/串联模式 设置或回传主/从设置

[SOURce]

来源副系统

-	
:CURRent <nrf ?=""></nrf>	设置或回传电流值:
	0 – 40A for DS3640-MO
	0 – 24A for DS6024-MO
	0 – 18A for DS8018-MO
	0 – 14.4A for DS10014-MO
:PROTection <boolean ?=""></boolean>	设置或回传过电流状态
:LEVel <nrf ?=""></nrf>	设置或回传过电流值
:VOLTage <nrf ?=""></nrf>	设置或回传电压值:
	0 – 36V for DS3640-MO
	0 – 60V for DS6024-MO
	0 – 80V for DS8018-MO
	0 \sim 100V for DS10014-MO
:PROTection <boolean ?=""></boolean>	设置或回传过电压状态
:LEVel <nrf ?="" =""></nrf>	设置或回传讨申压值

SYStem

:BEEP <Boolean |?> :E5V <Boolean |?> :ERRor? :EXTernal <OFF/0,VOLT/1,RES/2 | ?> :GPIB :ADDRess <NR1|?> :IP :ADDRess <NR1.NR1.NR1.NR1|?> :CONFig <STATic/0,DHCP/1 |?> :KEY :LOCK <Boolean |?> :LCD

:BL <Boolean |?>

系统副系统

设置或回传蜂鸣器状态 启用或禁用外部 5V 输出 回传**系统错误** 设置或回传外部状态

设置或回传 GPIB 地址 (1-31)

设置或回传 IP 地址 设置或回传 IP 配置模式

设置或回传锁键状态

设置或回传 LCD 亮度状态

:POWer :CURRent <NRf |?> :STATe <Boolean |?> :TYPE <OFF/0,LAST/1,USER/2 |?> :VOLTage <NRf |?> :RECall :DEFault :REMote <USB/0,GPIB/1,ETHERNET/2 |?> :SERies?

设置或回传使用者定义的电流值 设置或回传使用者定义的输出状态 设置或回传 power up mode 设置或回传使用者定义的电压值

读取出厂设置 设置或回传遥控介面

回传序列号

TIMER

<Boolean> ? :HOUR<NR1|?> :MINute<NR1|?> :SECond<NR1|?>

举例: Q28. 如何取消所有动作? ABOR ABORT Q29. 如何 FETCH 电流? FETC:CURR? FFTCH:CURRENT? Q30. 如何 FETCH 电压? FETC:VOLT? FFTCH:VOLTAGE? Q30. 如何量测电流? MEAS:CURR? **MEASURE:CURRENT? O31**. 如何量测电压? MFAS:VOLT? MFASURF:VOLTAGF? Q33. 如何设定及读回记忆组别? MEM 1 MEMORY 3 MEM?

定时器副系统

启用或禁用定时器模式 回传定时器状态 设置或回传定时器小时 设置或回传定时器分钟 设置或回传定时器秒

MFMORY? Q34. 如何设定及读回记忆组别的电压? MFM:VSFT 10 MFM:VSFT? MEMORY:VSET 20 MEMORY:VSET? Q35. 如何设定及读回记忆组别的电流? MFM:ISFT 15 MFM:ISFT? MFMORY: ISFT 25 MEMORY: ISET? O36. 如何储存记忆组别中的数据? MFM:SAVF MFMORY:SAVF O37. 如何设定及取消输出? OUT ON OUTPUT 0 O38. 如何设定及读回限电压值? OUT:LIM:VOLT 30 OUT:LIM:VOLT? **OUTPUT:LIMIT:VOLTAGE 35** OUTPUT: I IMIT: VOI TAGE? Q39. 如何设定及读回限电流值? OUT:LIM:CURR 30 OUT:LIM:CURR? OUTPUT:LIMIT:CURRENT 35 OUTPUT:LIMIT:CURRENT? Q40. 如何设定及读回电压 SLEW RATE? OUT:SR:VOLT 2.4 OUT:SR:VOLT? OUTPUT:SR:VOLTAGE 0.01 OUTPUT:SR:VOLTAGE? O41. 如何设定及读回电流 SLEW RATE? OUT:SR:CURR 2.5 OUT:SR:CURR? OUTPUT:SR:CURRENT 0.01 OUTPUT:SR:CURRENT? Q42. 如何读回输出模式? OUT:STAT? OUTPUT:STATE?

O43. 如何读回保護状态值? PROT? **PROTECTION?** Q44. 如何设定及读回 CC 转 CV 保护状态? PROT:CCCV ON PROT:CCCV? **PROTECTION:CCCV 0 PROTECTION:CCCV? O45**. 如何设定及读回 CV 转 CC 保护状态? PROT: CVCC ON PROT:CVCC? **PROTECTION: CVCC 0 PROTECTION:CVCC?** O46. 如何清除保护状态? PROT:CLF **PROTECTION: CLEAR** OUT:PROT:CLE OUTPUT:PROTECTION:CLEAR O47. 如何设定及读回讨电流保护状态? PROT: OCP ON PROT: OCP? PROTECTION OCP 0 **PROTECTION:OCP?** SOUR:CURR:PROT ON SOUR:CURR:PROT? SOURCE: CURRENT: PROTECTION 0 SOURCE:CURRENT:PROTECTION? O48. 如何设定及读回过电流保护点? PROT: OCP: LEV 30 PROT: OCP: LEV? **PROTECTION: OCP: LEVEL 40** PROTECTION:OCP:LEVEL? SOUR:CURR:PROT:LEV 25 SOUR:CURR:PROT:LFV? SOURCE: CURRENT: PROTECTION: LEVEL 35 SOURCE:CURRENT:PROTECTION:LEVEL? O49. 如何设定及读回过功率保护状态? PROT: OPP ON PROT: OPP? **PROTECTION:OPP 0**

PROTECTION:OPP? Q50. 如何设定及读回过功率保护点? PROT: OPP: LEV 30 PROT: OPP: I FV? PROTECTION: OPP: I EVEL 40 **PROTECTION:OPP:LEVEL?** Q51. 如何设定及读回过电压保护状态? PROT: OVP ON PROT: OVP? **PROTECTION: OVP 0 PROTECTION:OVP?** SOUR:VOLT:PROT ON SOUR:VOLT:PROT? SOURCE: VOLTAGE: PROTECTION 0 SOURCE: VOLTAGE: PROTECTION? O52. 如何设定及读回过电压保护点? PROT: OVP: LEV 30 PROT: OVP: I FV? **PROTECTION: OVP: LEVEL 40** PROTECTION: OVP: LEVEL? SOUR:VOLT:PROT:LEV 25 SOUR:VOLT:PROT:LFV? SOURCE: VOLTAGE: PROTECTION: LEVEL 35 SOURCE: VOLTAGE: PROTECTION: LEVEL? O53. 如何设定蜂鸣器? SYS:BEEP ON SYSTEM: BEEP 0 Q54. 如何设定第二组 5V 电压输出? SYS:E5V ON SYSTEM:E5V 0 **Q55.** 如何读回错误码? SYS:ERR? SYSTEM: ERROR? Q56. 如何设定及读回外调功能? SYS:EXT VOLT SYS:EXT? SYSTEM: EXTERNAL RESISTANCE SYSTEM: FXTERNAL? **O57.** 如何设定及读回 GPIB 地址? SYS:GPIB:ADDR 5

SYS:GPIB:ADDR? SYSTEM: GPIB: ADDRESS 6 SYSTEM: GPIB: ADDRESS? **O58.** 如何设定及读回 IP 地址? SYS: IP: ADDR 192 168 0 208 SYS: IP: ADDR? SYSTEM: IP: ADDRESS 192,168,10,10 SYSTEM: IP: ADDRESS? 059. 如何设定及读回 IP 模式? SYS: IP: CONF DHCP SYS: IP: CONF? SYSTEM: IP: CONFIG STATIC SYSTEM: IP: CONFIG? O60. 如何设定及读回按键锁定功能? SYS:KEY:LOCK ON SYSTEM: KEY! OCK? O61. 如何设定及读回 LCD 背光功能? SYS: ICD: BLON SYSTEM: I CD: BI ? Q62. 如何设定及读回开机模式设定? SYS:POW:TYPE LAST SYS:POW:TYPF? SYS: POWER: TYPE USER SYS:POWFR:TYPF? Q63. 如何设定及读回用户自定义开机模式的电压? SYS:POW:VOLT 10 SYS:POW:VOLT? SYSTEM: POWER: VOLTAGE 20 SYSTEM: POWER: VOLTAGE? **O64.** 如何设定及读回用户自定义开机模式的电流? SYS:POW:CURR 10 SYS:POW:CURR? SYSTEM: POWER: CURRENT 20 SYSTEM: POWER: CURRETN? **O65.** 如何设定及读回用户自定义开机模式的输出状态? SYS:POW:STAT ON SYS:POW:STAT? SYSTEM: POWER: STATE 0 SYSTEM: POWER: STATE? Q66. 如何回复出厂设定?

SYS:REC:DEF SYSTEM'RECALL'DEFAULT O67. 如何设定及读回诵讯接口? SYS:REM GPIB SYS:REM? SYSTEM: REMOTE FTHERNET SYSTEM: REMOTE? Q68. 如何读回 SERIES NUMBER? SYS:SFR? SYSTEM:SERIES? Q69. 如何设定及读回输出电压? SOUR:VOLT 30 SOUR:VOLT? SOURCE: VOLTAGE 35 SOURCE:VOLTAGE? O70. 如何设定及读回输出电流? SOUR:CURR 40 SOUR:CURR? SOURCE: CURRENT 35 SOURCE:CURRENT? Q71. 如何设定 Program 功能? 请参阅 5.11 Program 功能 Q72. 如何设定及读回串/并联模式? **PS:MODE PARALLEL** PS:MODF? PS:MODF 2 PS:MODF OFF Q73. 如何设定及读回串/并联模式的主从设定? **PS:TYPE MASTER** PS:MODF? PS:MODE SLAVEB PS:MODE 3

7.5 状态定义的规则

	Byte 2	Byte 1	Byte 0
	bit 7 ~ bit 0	bit 7 ~ bit 0	bit 7 ~ bit 0
byte 0:	Bit7	OVP 开/关状态	
	Bit6	OCP 开/关状态	
	Bit5	OPP 开/关状态 s	5
	Bit4	CC to CV 开/关状	态
	Bit3	CV to CC 开/关状	态
	Bit2	输出开/关状态	
	Bit1	LCD 背光开/关制	犬态
	BitO	外部 5V 输出开	-/关状态
byte 1:	Bit7	OVP 发生旗号	
	Bit6	OCP 发生旗号	
	Bit5	OPP 发生旗号	
	Bit4	CC to CV 发生旗	号
	Bit3	CV to CC 发生旗	号
	Bit2	AC dectect low 发	发生旗号
	Bit1	OTP 发生旗号	
	BitO	reserved	
byte 2:	bit 0 ~ 7	reserved	

当使用 "STATE?" 命令时, 系统会回传 3 bytes 如下表所示:

7.6 LAN 通讯

DS 全系列电源供应器提供三种 LAN 控制方式:Web server、Telnet 及 Sockets。 首先进入 Menu 的第一项 System setting 中将接口选择(Remote control)设为 Ethernet,再选择 IP 设定方式为固定(Static)或是使用动态 DHCP(Dynamic Host Configuration Protocol),若是使用固定 IP 则需自行输入 IP 地址,完成后即可使 用上列三种 LAN 控制方式控制机器。

7.6.1 使用 Web Server

DS 全系列电源供应器均内建 Web Server,可使用计算机上的网页浏览器来控制机器。开启网页浏览器并输入机器的 IP 地址即可进入欢迎页面。

Prog	rammable DC Power Supply	
	DS3640	
fome	Web Login Page	
Configuration Status	Please key in the password to get in the web control page PASSWORD :	
Neb Control Logisut	LOOM	

输入密码(默认为 123456)后可进入主页面(Home),进入主页面后可点擎左侧 项目选择至其他设定或控制页面。

7.6.1.1 主页面(Home)

主页面为显示机器的各项基本信息及网络的信息

ipply	able DC Pov	Programm	
		INFORMATION	
	D53642	Instrument Model	
	BAK PRECISI	Manufacturer	
	DC Power Sup	Description	athe -
	80 17 FS 60 9	MAC Address	infiguration
	192,168,100,1	IP Address	atus
	1.23	Firmulare Version	ab Control
	GPIB V1.04.H	GPIB Card Firmware Version	CAL THE OTHER DR

7.6.1.2 设定页面(Configuration)

可设定机器的各项参数值及重设密码

	Programn	nable DC Power Supply	
	CONFIG		
	OVP Setting	© Dit # OFF DVP Value ~ 102.000 (2 - 100.000 V)	
	OCP Setting	© ON # OFF OCP Value = [15.808 (E.818 - 15.801 A.)	
figuration	OPP Setting	© CHL # CPP CPP Value = [1442.000 (8 - 1800.000 W)	
tus	LCD back light	♦ ON © 1 MIN OFF © 5 MINS OFF © 10 MINS OFF © 30 MINS OFF	
Control	Change Password	0LD CONVINUE MELVE	

7.6.1.3 状态页面(Status)

显示机器的状态,错误码请参阅 7.3 错误/事件列表

	Programm	able DC Power Supply	
	STATUS		
	Last Enter/Warning	8	
lome	Refest		
onfiguration			
itatius			
Veb Control			
ogosit			
	1		

7.6.1.4 控制页面(Web Control)

可设定电压电流及输出并可在线监控输出电压电流值(需支援 JAVA)

WEB CONTROL	
OFF 0.000 V 0.000 A OFF (0.000 (0-100 500 V) 3et=[1000 (0.000-14.990 A) (set]	
	VIES CONTROL OFF 0,000 V 0,000 A Viet = [0.000 (0-100.500 V) Just = [1.000 (0.000 - 14.500 A) [SET]

7.6.2 使用 Telnet

在 MS-DOS 的命令提示字符后输入: Telnet DeviceIP 5024(其中 DeviceIP 为机器的 IP 地址, 5024 为 Telnet port),则会出现下列欢迎画面:

在命令提示字符后打入 SCPI 命令即可与机器通讯。

7.6.3 使用 Sockets

DS 系列使用 port 5025 提供标准的 SCPI socket 功能,用户可以透过自行编写的 程序利用标准的 SCPI socket 直接下 SCPI 命令以达到控制机器的目的。

8. 附件组装说明

8.1 固定耳片、握把组装图

8.2 DS6024-MO/DS8018-MO/DS10014-MO 电源输出端防护罩拆 装说明图

8.3 DS6024-MO /DS8018-MO/ DS10014-MO RMT / LCL Sense 防 护罩拆装说明图

9. 附件一览表

产品名称:DS 全系列

A.附件组

項目	品名規格	數量	備註
1	快速連接器	1	
2	固定耳片	2	
3	握把	2	
4	使用說明書	1	
5	電源線	1	
6	螺絲(M4x8)	10	
7	螺絲(M5x8)	4	
8	保證卡	1	

警告: 本产品之附件为 safe 认可品,满足额定规格下之广泛 应用,使用 者应先详阅说明书并依内容指示步骤使用。例如 使用者换装左右侧边 拉扣,应注意更换顺序、螺丝数量和长 度等有关信息,以免误装导致 危害或影响保固服务权益。

版本号码:Ver1.0

ZOMG-3640MC-1E

