

CMS8F003 数据手册

增强型闪存8位CMOS单片机

Rev. 0.1.1

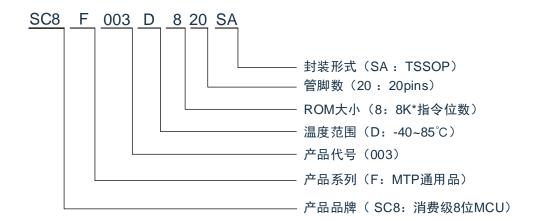
请注意以下有关CMS知识产权政策

*中微半导体(深圳)股份有限公司(以下简称本公司)已申请了专利,享有绝对的合法权益。与本公司MCU或其他产品有关的专利权并未被同意授权使用,任何经由不当手段侵害本公司专利权的公司、组织或个人,本公司将采取一切可能的法律行动,遏止侵权者不当的侵权行为,并追讨本公司因侵权行为所受的损失、或侵权者所得的不法利益。

*中微半导体(深圳)股份有限公司的名称和标识都是本公司的注册商标。

**本公司保留对规格书中产品在可靠性、功能和设计方面的改进作进一步说明的权利。然而本公司对于规格内容的使用不负责任。文中提到的应用其目的仅仅是用来做说明,本公司不保证和不表示这些应用没有更深入的修改就能适用,也不推荐它的产品使用在会由于故障或其它原因可能会对人身造成危害的地方。本公司的产品不授权适用于救生、维生器件或系统中作为关键器件。本公司拥有不事先通知而修改产品的权利,对于最新的信息,请参考官方网站 www.mcu.com.cn。

1. 产品概述


1.1 功能特性

- ◆ 兼容 MCS-51 指令系统
- 机器周期最快支持 1T_{SYS} @ F_{SYS}=16MHz
- ◆ 内存
- 程序 Flash: 8Kx8通用 RAM: 256x8
- 通用 XRAM: 256x8
- Data Flash: 128x16
- ◆ 振荡方式
- HSI 内部高速 RC 振荡: 16MHz
- HSE 外部高速晶体振荡: 最高 16MHz
- LSI 内部低速 RC 振荡: 32KHz
- ◆ 中断源
- 2个定时中断
- GPIO 中断
- 其它外设中断
- ◆ 定时器
- WDT 定时器 (看门狗定时器)
- 8 位定时器 TIMER0
- 16 位定时器 TIMER1
- PWM
 - 5路 PWM.
- 支持互补模式
- 4路 PWM 共用周期,独立占空比
- 1路 PWM 独立周期,独立占空比

- ◆ 工作电压范围:
 - 3.0V~5.5V@16MHz 1T
 - 1.8V~5.5V@16MHz 2T
- ◆ 工作温度范围:
- -40°C~85°C
- ◆ 低压复位功能(LVR)
 - 1.8V/2.0V/2.5V/3.0V
- ◆ 比较器模块
- ◆ 通信模块
 - I2C 通信模块
 - USART 通信模块
- SPI 通信模块
- ◆ 高精度 12 位 ADC
 - 内建高精度 1.2V 基准电压
- ±1.5% @VDD=2.5V~5.5V TA=25°C
- ±2% @VDD=2.5V~5.5V TA=-40°C~85°C
- ◆ 低功耗模式
 - 空闲模式(IDLE)
- 休眠模式 (STOP)
- ◆ 支持两线/单线串行编程与调试

1.2 产品型号一览表

型号说明

PRODUCT	ROM	RAM	Pro EE	I/O	ADC	USART	SPI	IIC	PACKAGE
CMS8F003D820SA	8Kx8	512x8	128x16	18	12Bitx18	1	1	1	TSSOP20

备注: ROM----程序存储器 Pro EE----程序EEPROM

www.mcu.com.cn 3 / 27 V0.1.1

1.3 在线串行编程

可在最终应用电路中对单片机进行串行编程。编程可以简单地通过以下 4 根线完成:

- ◆ 电源线
- ◆ 接地线
- ◆ 数据线
- ◆ 时钟线

这使用户可使用未编程的器件制造电路板,而仅在产品交付前才对单片机进行编程。从而可以将最新版本的固件或者定制固件烧写到单片机中。

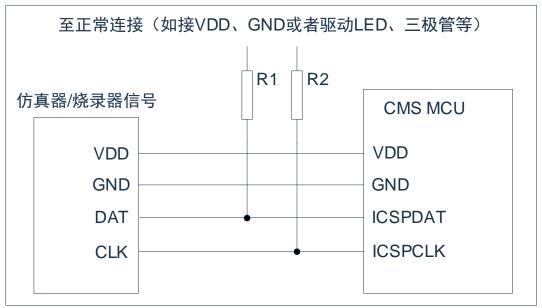


图 1-1: 典型的在线串行编程连接方法

上图中, R1、R2 为电气隔离器件, 常以电阻代替, 其阻值如下: R1≥4.7K、R2≥4.7K。

注意在编程和调试时,ICSPDAT禁止连接下拉电阻。如果实际电路需要接下拉电阻,建议利用跳线结构,在编程/调试时断开下拉电阻,完成之后再接入下拉电阻。

www.mcu.com.cn 4 / 27 V0.1.1

2. 系统概述

2.1 系统简介

系统配置寄存器(CONFIG)是 MCU 初始条件的 FLASH 选项。它只能被 CMS 烧写器烧写,用户不能访问及操作。它包含了以下内容:

- 1. WDT (看门狗选择)
 - ◆ ENABLE 打开看门狗定时器◆ DISABLE 关闭看门狗定时器
- 2. PROTECT (加密)
 - ◆ DISABLE FLASH 代码不加密
 - ◆ ENABLE FLASH 代码加密,加密后烧写仿真器读出来的值将不确定
- 3. LVR SEL(低压侦测电压选择)
 - ◆ 1.8V
 - ◆ 2.0V
 - ◆ 2.5V
 - ◆ 3.0V
- 4. DEBUG EN (调试口功能选择)
 - ◆ ENABLE DSCK、DSDA 口一直保持为调试口,所有功能均不能使用
 - ◆ DISABLE DSCK、DSDA 口为普通功能口
- 5. 调试模式选择
 - ◆ 单线调试使能
 - ◆ 双线调试使能
- 6. EXT RESET(外部复位口选择)
 - ◆ DISABLE 禁止外部复位口功能◆ ENABLE 允许外部复位口功能
 - ◆ ENABLE RUP 允许外部复位口功能,并打开外部复位口上拉电阻
- 7. WRPR[7:0] (程序存储器写保护位, 0x0000H~0x1FFFH, 每一位保护 1K 空间)
 - ◆ DISABLE 程序区间不受写保护
 - ◆ ENABLE 程序区间受写保护, 自写 ROM 时无法写入该区间
- 8. WAIT NUM (ROM 读取等待)
 - ◆ DISABLE 无等待周期
 - ◆ ENABLE 一个等待周期
- 9. 振荡源选择
 - ◆ 外部高速晶振 HSE
 - ◆ 内部高速内振 16M

2.2 存储结构

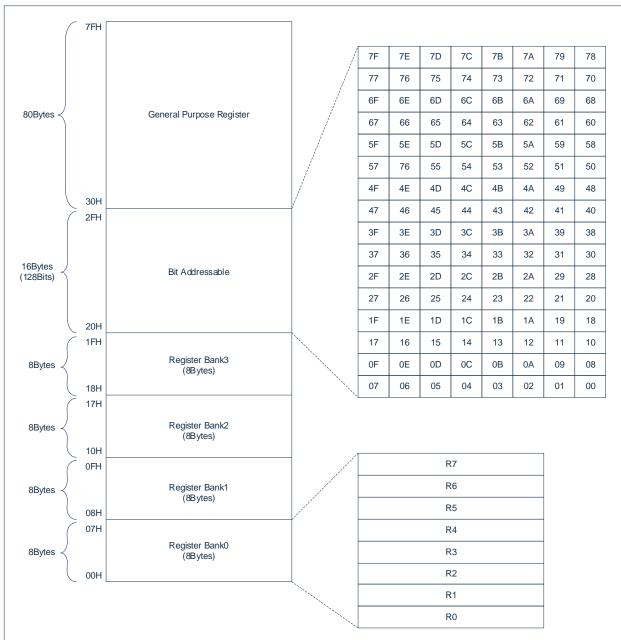
2.2.1 程序存储器 FLASH

该芯片具有一个 8KB 的 FLASH 存储空间, FLASH 空间分配结构框图如下:

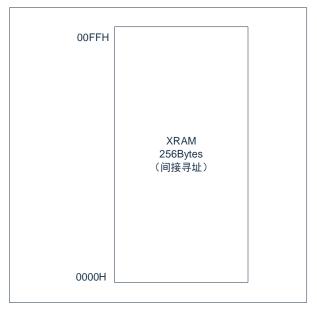
FLASH:8K

0000H	复位向量	程序开始,跳转至用户程序
0003H	中断向量0	中断入口0,用户中断程序
000BH	中断向量1	中断入口1,用户中断程序
007BH	中断向量15	中断入口15,用户中断程序
0083H		用户程序区

1FFFH	跳转至复位向量0000H	程序结束


2.2.2 数据存储器

内部数据存储器分为 3 个部分: 低 128Bytes、高 128Bytes、特殊功能寄存器 SFR。RAM 空间分配结构 框图如下图所示:


上图所示的低 128Bytes 空间寄存器分配如下图所示。最低的 32 字节(00H~1FH)组成了 4 个寄存器组,每组 8 个存储单元,以 R0~R7 作为单元编号,用于保存操作数及中间结果等。复位后,默认选择 0 组,如果选择其他寄存器组,需通过改变程序状态来决定。寄存器组后边的 16Bytes(20H~2FH)组成了可位寻址的存储空间,该区域的 RAM 单元既可以按字节操作,也可以对单元中的每一位直接位操作。剩余的 80 个存储单元(30H~7FH),用户可设置堆栈区和存储中间数据。

2.2.3 通用外部数据寄存器 XRAM

芯片内部有最大 256Bytes XRAM 区域,该区域与 FLASH/RAM 没有联系,XRAM 空间分配结构框图如下图所示:

3. 管脚定义

3.1.1 CMS8F003D820SA 引脚图

管脚功能说明

		·
管脚名称	IO 类型	管脚说明
VDD, GND	Р	电源电压输入脚,接地脚
P04-P05	I/O	可编程为输入脚,推挽输出脚,带上拉电阻功能,下拉电阻功能,带开漏输出功能
P13-P17	I/O	可编程为输入脚,推挽输出脚,带上拉电阻功能,下拉电阻功能,带开漏输出功能
P21-P26	I/O	可编程为输入脚,推挽输出脚,带上拉电阻功能,下拉电阻功能,带开漏输出功能
P30-P32,P35-P36	I/O	可编程为输入脚,推挽输出脚,带上拉电阻功能,下拉电阻功能,带开漏输出功能
DSCK/ DSDA	I/O	双线调试的编程时钟/数据脚
SWI	I/O	单线调试的通讯口
AN0-AN30	1	12 位 ADC 输入脚
NRST	1	外部复位输入脚
INT0,INT1	1	外部中断 0 和外部中断 1 输入脚
CCPx	1	捕捉输入脚
T0CKI	1	TIMER0 外部时钟输入脚
T1CKI	1	TIMER1 外部时钟输入脚
T1G	1	TIMER1 门控输入脚
PWMn_X	0	PWM0-4 输出脚
SCL_X	I/O	I ² C 时钟输入/输出脚
SDA_X	I/O	I ² C 数据输入/输出脚
TX/CK_X	I/O	USART0 异步发送输出/同步时钟输入/输出脚
RX/DT_X	I/O	USART0 异步接收输入/同步数据输入/输出脚
OSCIN,OSCOUT	1	晶振 32.768K 输入脚
COP_X	1	比较器正端输入脚
C0N_X	1	比较器负端输入脚
C0UT_X	0	比较器结果输出脚
MISO	I/O	SPI 的主控数据输入/从动数据输出
MOSI	I/O	SPI 的主控数据输出/从动数据输入
SDIO	I/O	SPI 三线模式的数据输入输出
SS	1	SPI 从动模式使能输入脚
SCK	I/O	SPI 的时钟输入输出

3.2 GPIO 特性

管脚多种功能共享,每个 I/O 口可灵活配置数字功能或者指定的模拟功能。I/O 作为通用 GPIO 口具有如下特性:

- ◆ 可读取数据锁存器状态或者引脚状态。
- ◆ 可配置上升沿、下降沿、双沿触发中断。
- ◆ 可配置上升沿、下降沿、双沿中断唤醒芯片。
- ◆ 可配置成普通输入、上拉输入、下拉输入、推挽输出、开漏输出模式。

3.3 管脚功能列表

芯片有四个 I/O 端口: PORT0、PORT1、PORT2、PORT3(最多 18 个 I/O)。可读写端口数据寄存器可直接存取这些端口。

<u> 2</u> Ш —	12	We bruth / Tr	1/0
端口	位	管脚描述	I/O
PORT0	4	施密特触发输入,推挽式输出,AN4,RXD,SCL,PWM4,C0MP+	I/O
FORTO	5	施密特触发输入,推挽式输出,AN5,TXD,SDA,T1CKI,COMP-	I/O
	3	施密特触发输入,推挽式输出,AN11,PWM1,CCP2,COMP+,T0CKI	I/O
	4	施密特触发输入,推挽式输出,AN12,PWM3,CCP3,COMP-	I/O
PORT1	5	施密特触发输入,推挽式输出,AN13,SPI_SCK,PWM4,CCP4,COMPO	I/O
	6	施密特触发输入,推挽式输出,AN14,SPI_MOSI,PWM0,CCP5	I/O
	7	施密特触发输入,推挽式输出,AN15, SPI_MISO, PWM2, CCP6, T1G	I/O
	1	施密特触发输入,推挽式输出,AN17,RXD,SCL,DSCK,SWI	I/O
	2	施密特触发输入,推挽式输出,AN18,PWM0,CCP7,COMP+	I/O
PORT2	3	施密特触发输入,推挽式输出,AN19,PWM2,CCP8,COMP-	I/O
PURIZ	4	施密特触发输入,推挽式输出,AN20,PWM1,CCP0,COMPO	I/O
	5	施密特触发输入,推挽式输出,AN21,INT0,TXD	I/O
	6	施密特触发输入,推挽式输出,AN22,INT1,RXD	I/O
	0	施密特触发输入,推挽式输出,AN24,NRST	I/O
	1	施密特触发输入,推挽式输出,AN25,OSCIN	I/O
PORT3	2	施密特触发输入,推挽式输出,AN26,OSCOUT	I/O
	5	施密特触发输入,推挽式输出,AN29,DSDA,SDA,TXD	I/O
	6	施密特触发输入,推挽式输出,AN30, SPI_SS, PWM3, CCP1, COMPO	I/O

4. 功能概要

4.1 系统时钟

芯片有2种振荡方式:

- ▶ 内部 RC 振荡
- ▶ 外部 XT 振荡。

4.1.1 内部 RC 振荡

芯片默认的振荡方式为内部 RC 振荡,其振荡频率 16MHz,可通过 OSCCON 寄存器设置芯片工作频率。 当选择内部 RC 作为芯片的振荡器时,芯片的 OSCIN 和 OSCOUT 可以作为普通的 I/O 口。

4.1.2 外部 XT 振荡

在烧录时将 CONFIG 选项中的 OSC 选择成 XT, 芯片工作在外部 XT 振荡模式下, 此时内部 RC 振荡停止工作, OSCIN 和 OSCOUT 作为振荡口。

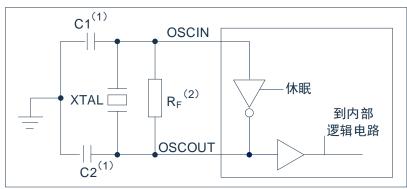


图 4-1: 典型的 XT 振荡方式

建议参数:

类型	频率	建议值 R _F	建议值 C1~C2
XT	4MHz	1ΜΩ	10pF∼47pF
XT	8MHz	1ΜΩ	10pF∼47pF
XT	16MHz	1ΜΩ	10pF∼47pF

www.mcu.com.cn 11 / 27 V0.1.1

4.2 复位

芯片可用如下 4 种复位方式:

- ▶ 上电复位。
- ▶ 低电压复位。
- ▶ 正常工作下的看门狗溢出复位。
- ▶ 外部复位。

4.3 电源管理

4.3.1 工作模式

芯片有3种不同的工作模式,以适应不同应用的功耗需求。

- ▶ 正常工作模式: MCU 处于正常工作状态,外设正常运行。
- ▶ 空闲模式 IDLE: MCU 处于空闲模式, CPU 停止工作, 外设正常运行。该模式可由任意中断唤醒。
- ▶ 休眠模式 STOP: MCU 处于休眠模式, CPU 停止工作, 外设停止工作。该模式可由 INT0/1 中断唤醒、GPIO 中断唤醒、WUT 定时唤醒、LSE 定时唤醒。

4.3.2 电源低压复位(LVR)

当电源电压低于设置的检测电压时,则系统复位。低压复位有 4 种选择: 1.8V/2.0V/2.5V/3.0V。

4.3.3 电源低压检测(LVD)

低电压检测电路可将电源电压和设置电压进行比较,如果电源电压低于设置的电压,则产生中断请求信号。可设置的检测电压范围 2.0V~4.3V, 共 8 级可选。

www.mcu.com.cn 12 / 27 V0.1.1

4.4 中断控制

芯片具有 17 个中断源及中断向量:

中断源	中断描述	中断向量	同级优先序列
INT0	外部中断 0	0-0x0003	1
Timer0	Timer0 溢出中断	1-0x000B	2
INT1	外部中断 1	2-0x0013	3
Timer1	Timer1 溢出中断	3-0x001B	4
TXIF	USART 发送中断	4-0x0023	5
RCIF	USART 接收中断	5-0x002B	6
ADC	ADC 中断	6-0x0033	7
PWM	PWM 中断	7-0x003B	8
IIC	IIC 中断	9-0x004B	10
BCLIF	IIC 总线冲突中断	10-0x0053	11
CCP	CCP 中断	11-0x005B	12
P0IF	PORT0 电平变化中断	12-0x0063	13
P1IF	PORT1 电平变化中断	13-0x006B	14
P2IF	PORT2 电平变化中断	14-0x0073	15
P3IF	PORT3 电平变化中断	15-0x007B	16
CMPIF	比较器中断	16-0x0103	17
SPIIF	SPI 中断	17-0x010B	18

芯片规定两个中断优先级,可实现两级中断嵌套。当一个中断已经响应,若有高级别中断发出请求,后 者可以中断前者,实现中断嵌套。

5. 数字功能

5.1 WDT 定时器

看门狗定时器是一个由系统时钟提供时钟源的片内定时器,WDT 计时溢出将产生复位。看门狗复位是系统的一种保护设置,当系统运行到一个未知状态时,可通过看门狗来使系统复位,从而避免系统进入到无限期的死循环。WDT 定时器具有如下特性:

- ▶ 看门狗溢出时间 8 档可选。
- ▶ 可设置看门狗溢出中断。
- ▶ 可设置看门狗溢出复位。

5.2 定时计数器 TIMER0

TIMER0 由如下功能组成:

- ▶ 8位定时器/计数器寄存器(TMR0);
- ▶ 8 位预分频器 (与看门狗定时器共用);
- ▶ 可编程内部或外部时钟源:
- ▶ 可编程外部时钟边沿选择;
- ▶ 可选外部 32.768K 振荡时钟(FLSE);
- > 溢出中断。

5.3 定时计数器 TIMER1

TIMER1 模块是一个 16 位定时器/计数器, 具有以下特性:

- 16 位定时器/计数器寄存器(TMR1H:TMR1L)
- ▶ 3位预分频器
- ▶ 同步或异步操作
- ▶ 溢出时唤醒(仅外部时钟异步模式)
- ▶ 特殊事件触发功能(带有 ECCP)
- ▶ 可编程内部或外部时钟源
- ▶ 通过 T1G 引脚门控 TIMER1(使能计数)
- ▶ 溢出中断
- ▶ 捕捉/比较功能的时基

5.4 捕捉模块 (CCP)

芯片包含 1 个捕捉模块。

捕捉模块是允许用户定时和控制不同事件的外设。在捕捉模式下,该外设能对事件的持续时间计时。捕捉模式允许用户在预先确定的定时时间结束后触发一个外部事件。

5.5 PWM 模块

芯片包含一个 10 位 PWM 模块,可配置为 4 路共用周期、独立占空比的输出+1 路独立输出,或 2 组互补输出+1 路独立输出。

- ▶ 支持单次、连续模式2种波形输出。
- ▶ 支持独立、互补、2控制模式。
- ▶ 计数时钟可选择 1、2、4、8、16 分频。
- ▶ 支持死区编程。
- ▶ 可设置输出极性。

www.mcu.com.cn 15 / 27 V0.1.1

5.6 通讯模块

5.6.1 USART 模块

UART 具有如下特性:

- ▶ 全双工异步发送和接收
- 单字符输出缓冲器
- > 双字符输入缓冲器
- ➢ 接收到字符的帧错误检测
- ▶ 半双工同步从动模式
- ▶ 可将字符长度编程为8位或9位
- 输入缓冲溢出错误检测
- ▶ 半双工同步主控模式
- ▶ 同步模式下,可编程时钟极性

5.6.2 SPI 模块

SPI 模式允许同时同步发送和接收 8 位数据。支持 SPI 的主控模式和从动模式。另外,可选择 3 线模式 或 4 线模式。

SPI 是一个完全可配置的 SPI 主机/从机设备,允许用户配置串行时钟信号的极性和相位。SPI 允许 MCU 与串行外围设备进行通信。它还能够在多主机系统中进行处理器间通信。SPI 具有如下特性:

- 全双工同步串行数据传输。
- ▶ 支持主机/从机模式。
- ▶ 支持多主机系统。
- > 系统错误检测。
- ▶ 支持速度高达系统时钟的 1/4(FSYS≤24MHz)。
- ▶ 发送/接收完成可产生中断

5.6.3 I²C 模块概述

两线双向串行总线控制器 I2C 为微处理器和 I2C 总线之间的数据交换提供了一种简单有效的连接方式。 I2C 模块具有如下特性:

- ▶ 支持4种工作方式:主控发送、主控接收、从动发送、从动接收。
- ▶ 支持 2 种传输速度模式: 标准(高达 100Kb/s); 快速(高达 400Kb/s)。
- 执行仲裁和时钟同步。
- ▶ 支持多主机系统。
- ▶ 主机方式支持 I2C 总线上的 7 位寻址模式与 10 位寻址模式 (软件支持)。
- ▶ 从机方式支持 I2C 总线上的 7 位寻址模式。
- ▶ 允许在较宽时钟频率范围进行操作(内置8位定时器)。
- ▶ 接收/发送完成可产生中断。

6. 模数模块

6.1 模数转换器(ADC)

模数转换器(ADC)可以将模拟输入信号转换为表示该信号的一个 12 位二进制数。器件使用的模拟输入通道共用一个采样保持电路。采样保持电路的输出与模数转换器的输入相连。模数转换器采用逐次逼近法产生一个 12 位二进制结果,并将该结果保存在 ADC 结果寄存器中。

- ▶ 最多可达 30 个外部通道。
- > ADC 的转换时钟有 4 种时钟频率可选。
- ▶ ADC 参考电压可选择 VDD/1.2V。
- ▶ 一个完整的 12 位转换需要 18 个 ADC 转换周期。
- ▶ 支持 ADC 转换完成产生中断。

6.2 比较器 (CMP)

当 CMP 正端输入电压大于负端输入电压时, CMP 经过数字滤波后输出 1; 反之, 如果 CMP 正端输入电压小于负端输入电压,则 CMP 经过数字滤波后输出 0。

- ▶ 比较器失调电压≤±10mv;
- ▶ 输入共模电压范围: 0V~VDD-1.3V;
- ▶ 内置 1 个电阻分压模块,参考电压为 VDD;
- 比较器结果可选上升沿或下降沿触发中断;
- ▶ 比较器结果可选择从 GPIO 输出,且支持取反输出。

7. Flash 存储器

FLASH 存储器包含程序存储器(APROM/BOOT)与非易失性数据存储器(Data FLASH),可通过相关特殊功能寄存器 (SFR)对其进行存取操作以实现 IAP 功能。FLASH 存储器支持如下操作:

- > 字节读操作。
- > 字节写操作。
- > 页擦除操作。
- ▶ FLASH 空间 CRC 校验操作。

8. 唯一 ID

每颗芯片拥有不同 96 位唯一身份识别号,即唯一 ID(Unique identification)。出厂时已经设置,用户不能修改。

9. 用户配置

系统配置寄存器(CONFIG)是 MCU 初始条件的 FLASH 选项,程序不能访问及操作。通过系统配置寄存器可以设置如下内容:

- ▶ 看门狗的工作方式。
- ▶ FLASH 程序区分区保护、代码加密, FLASH 数据区加密状态。
- ▶ 低压复位电压。
- ▶ 调试模式禁止或使能。
- ▶ 振荡方式、预分频选择。
- 外部复位管脚上拉功能

10. 电气参数

10.1 极限参数

电源供应电压	GND-0.3V~GND+6.0\
存储温度	50°C~125°C
工作温度	40°C~85°C
端口输入电压	GND-0.3V~V _{DD} +0.3V
所有端口最大灌电流	200mA
所有端口最大拉电流	150mA

注:如果器件工作条件超过上述"极限参数",可能会对器件造成永久性损坏。上述值仅为运行条件极大值,我们不建议器件在该规范规定的范围以外运行。器件长时间工作在极限值条件下,其稳定性会受到影响。

www.mcu.com.cn 19 / 27 V0.1.1

10.2 直流电气特性

(VDD=5V, T_A= 25℃, 除非另有说明)

* -	↔ ₩L		测试条件	■ .l. /±	曲 叫 /=	目上仕	* 1*
符号	参数	VDD	条件	東小 狙	典型狙	東 大徂	单位
VDD	T. //- th CT	-	F _{SYS} =16MHz/1T	3.0	-	5.5	V
VDD	工作电压	-	F _{SYS} =16MHz/2T	1.8	-	5.5	V
		5V	F _{SYS} =16MHz/1T, 所有模拟模块关闭	-	5	-	mA
		5V	F _{SYS} =16MHz/2T, 所有模拟模块关闭	-	4	-	mA
I _{DD}	工作电流	3V	F _{SYS} =16MHz/1T, 所有模拟模块关闭	-	3	-	mA
		3V	F _{SYS} =16MHz/2T, 所有模拟模块关闭	-	2	-	mA
		5V	烧写程序 EEPROM	-	6	-	mA
		5V	LVR=DIS WDT=DIS	-	1.5	5	uA
1	静态电流	3V	LVR=DIS WDT=DIS	-	0.6	3	uA
I _{STB}		5V	LVR=DIS WDT=EN	1	4.8	12	uA
		3V	LVR=DIS WDT=EN	-	2.1	5.5	uA
V _{IL}	低电平输入电压	-		-	-	0.3VDD	V
VIH	高电平输入电压	-		0.7VDD	-	-	V
Vон	高电平输出电压	-	不带负载	0.9VDD	-	-	V
V _{OL}	低电平输出电压	-	不带负载	-	-	0.1VDD	V
V _{EEPROM}	EEPROM 模块工作电压	-		2.5	-	5.5	V
Б	L 拉 内 四 亿	5V	Vo=0.5VDD	-	36	-	ΚΩ
R _{PH}	上拉电阻阻值	3V	Vo=0.5VDD	-	3.0	-	ΚΩ
Б	工社中职职体	5V	Vo=0.5VDD	-	36	-	ΚΩ
R _{PL}	下拉电阻阻值	3V	Vo=0.5VDD	-	60	- 5.5 - 5.5 - 5.5 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	ΚΩ
	松山口湖山 次	5V	V _{OL} =0.3VDD	-	40	-	mA
loL	输出口灌电流	3V	V _{OL} =0.3VDD	-	20	0.6 3 4.8 12 2.1 5.5 - 0.3VDD 0.1VDD - 5.5 36 - 56 - 36 - 40 - 2010 - 1.2 +1.5%	mA
	*AU = + + *	5V	V _{OH} =0.7VDD	-	-20	-	mA
Іон	输出口拉电流 	3V	V _{OH} =0.7VDD	-	-10	-	mA
		VDD=	2.5~5.5V T _A =25°C	-1.5%	1.2	+1.5%	V
	中部基件中国407	VDD=	2.0~5.5V T _A =25°C	-2.5%	1.2	+2.5%	V
V_{BG}	内部基准电压 1.2V	VDD=2.5	5~5.5V T _A =-40~85°C	-2.0%	1.2	+2.0%	V
		VDD=2.0)~5.5V T _A =-40~85°C	-3.0%	1.2	+3.0%	V

10.3 比较器特性

(TA= 25℃, 除非另有说明)

(17) 20	0 1 1W-L71 12 00:41	•				
符号	参数	测试条件	最小值	典型值	最大值	单位
VDD	工作电压范围	-	2.0	-	5.5	V
lwork	工作电流	VDD=5V COMP+=2V COMP-=2V	-	34	46	uA
IWOIK	工作电流	VDD=3V COMP+=1V COMP-=1V	-	20	26	uA
la a	BG工作电流 VDD=5V		-	35	46	uA
I _{BG}	BG工作电流	VDD=3V	-	20 26 35 46 33 44 - VDD-1 - ±13 10 20	44	uA
V _{IN}	输入共模电压范围	-	0	-	VDD-1.3	V
Vos	失调电压	-	-	-	±13	mV
LSB	最小分辨率	-	-	10	20	mV
Tr	响应时间	-	-	-	6	us
	内部电阻分压误差	VDD=5V V _R >1V	-1%	-	+ 1%	-
_	门即电阻刀压伏左	VDD=5V V _R <1V	-2%	-	+ 2%	-

备注: VR 为内部电阻分压输出值

10.4 ADC 电气特性

(T_A= 25℃,除非另有说明)

符号	参数	测试条件	最小值	典型值	最大值	单位
		Vadref= VDD,Fadcclk=1MHz	3.0		5.5	V
		Vadref= VDD,Fadcclk=500kHz	2.7	3.0 5.5	5.5	V
V_{ADC}	ADC 工作电压	Vadref=2.0V,Fadcclk=250kHz	2.7		5.5	V
		Vadref=2.4V,Fadcclk=250kHz	2.7		5.5	V
		V _{ADREF} =3.0V,F _{ADCCLK} =500kHz	3.3		5.5	V
lado	ADC 转换电流	V _{ADC} =5V,V _{ADREF} = VDD, F _{ADCCLK} =500kHz			5.5 5.5 5.5 5.5 5.5 5.0 200	uA
IADC	ADC 较换电流	V _{ADC} =3V,V _{ADREF} = VDD, F _{ADCCLK} =500kHz			200	uA
V_{AIN}	ADC 输入电压	V _{ADC} =5V, V _{ADREF} = VDD, F _{ADCCLK} =500kHz	0		V _{ADC}	V
DNL1	微分非线性误差	V _{ADC} =5V, V _{ADREF} = VDD, F _{ADCCLK} =1MHz		±4		LSB
INL1	积分非线性误差	V _{ADC} =5V, V _{ADREF} = VDD, F _{ADCCLK} =1MHz		±8		LSB
DNL2	微分非线性误差	V _{ADC} =5V, V _{ADREF} = 3.0V, F _{ADCCLK} =500KHz, V _{AIN} <1V		±4		LSB
INL2	积分非线性误差	Vadc=5V, Vadref = 3.0V, Fadcclk=500kHz, Vain<1V		±16		LSB
DNL3	微分非线性误差	V _{ADC} =5V, V _{ADREF} = 2.4V, F _{ADCCLK} =250KHz, V _{AIN} <0.8V		±4		LSB
INL3	积分非线性误差	Vadc=5V, Vadref = 2.4V, Fadcclk=250kHz, Vain<0.8V		±16		LSB
DNL4	微分非线性误差	V _{ADC} =5V, V _{ADREF} = 2.0V, F _{ADCCLK} =250kHz,V _{AIN} <0.7V		±4		LSB
INL4	积分非线性误差	Vadc=5V, Vadref = 2.0V, Fadcclk=250kHz, Vain<0.7V		±16		LSB
T _{ADC}	ADC 转换时间			16		TADCCLK

备注: 低温规格值由设计保证, 量产不测低温条件。

10.5 上电复位特性

(T_A= 25℃,除非另有说明)

符号	参数	测试条件	最小值	典型值	最大值	单位
t _{VDD}	VDD 上升速率	-	0.05	-	-	V/ms
V _{LVR1}	LVR 设定电压=1.8V	VDD=1.6~5.5V	1.7	1.8	1.9	V
V _{LVR2}	LVR 设定电压=2.0V	VDD=1.8~5.5V	1.9	2.0	2.1	V
V_{LVR3}	LVR 设定电压=2.5V	VDD=2.3~5.5V	2.4	2.5	2.6	V
V _{LVR4}	LVR 设定电压=3.0V	VDD=2.8~5.5V	2.9	3.0	3.1	V

10.6 交流电气特性

(T_A= 25℃, 除非另有说明)

<i>55</i> 5 □	♦ ₩.	测试条件		= .1.	###	日上	₩ /÷
符号	参数	VDD	条件	最小	典型	最大 +20% +30% +30% +50% - - +1.5% +2.0% +3.0% +2.5%	单位
		VDD=2.5~5.5	√ TA=25°C	-20%	32	+20%	KHz
E	WDT 时钟源	VDD=1.8~5.5	√ Ta=25°C	-30%	32	+30%	KHz
Fwdt	VVDI的抑源	VDD=2.5~5.5	√ T _A =−40~85°C	-30%	32	+30%	KHz
		VDD=1.8~5.5	√ T _A =−40~85°C	-50%	32	+50%	KHz
T	EEPROM 编程时间	5V	F _{HSI} =16MHz	-	4.6	-	ms
Теергом		3V	F _{HSI} =16MHz	-	4.6	-	ms
		VDD=4.0~5.5	V TA=25°C	-1.5%	16	+1.5%	MHz
		VDD=2.5~5.5	V TA=25°C	-2.0%	16	+2.0%	MHz
FINTRC	内振频率 16MHz	VDD=1.8~5.5	V TA=25°C	-3.0%	16	+3.0%	MHz
FINIRC	内派频率 TOWN IZ	VDD=4.0~5.5	√ TA=-40~85°C	-2.5%	16	+2.5%	MHz
		VDD=2.5~5.5	√ TA=-40~85°C	-3.5%	16	+3.5%	MHz
		VDD=1.8~5.5	√ TA=-40~85°C	-5.0%	16	+5.0%	MHz

10.7 LSE 特性

(TA= 25℃,除非另有说明)

符号	参数	测试条件	最小值	典型值	最大值	单位
VDD	工作电压范围	-	1.8	-	5.5	V
FLSE	LSE振荡频率	-	-	32.768	-	KHz
C1	OSCIN引脚匹配电容	-	-	22	-	pF
C2	OSCOUT引脚匹配电容	-	-	22	-	pF
ILSE	LSE工作电流	VDD=5V C ₁ =22pF C ₂ =22pF	-	20	-	uA
		VDD=3V C ₁ =22pF C ₂ =22pF	-	8	-	uA
T _{LSE}	LSE稳定时间	VDD=5V C ₁ =22pF C ₂ =22pF	-	260	700	ms
		VDD=3V C ₁ =22pF C ₂ =22pF		300	1000	ms

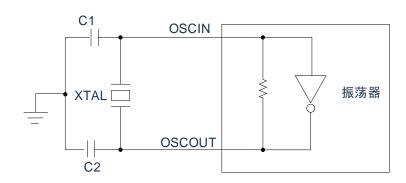


图 10-1: 典型应用电路

10.8 IIC 电气特性

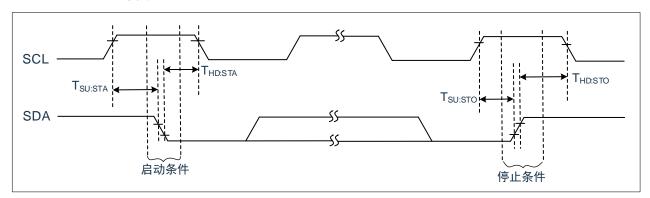


图 10-2: I²C™ 总线启动/停止位时序

符号	特性		条件	最小值	典型值	最大值	单位
T _{SU:STA} 启动条件建立时间	100kHz 模式		4700	1	1	ns	
	后列余件建业时间	400kHz 模式	仅与重复启动条件相关	600	-	1	ns
T _{HD:STA} 启动条件保持时间	100kHz 模式		4000	-	-	ns	
	后动条件保持时间	400kHz 模式	这个周期后产生第一个时钟脉冲	600	-	-	ns
T _{SU:STO} 停止条件建立时间	100kHz 模式		4700	-	-	ns	
	停止余件建业时间	400kHz 模式		600	-	-	ns
T _{HD:STO}	停止条件保持时间	100kHz 模式		4000	-	-	ns
		400kHz 模式		600	-	-	ns

备注: 这些参数仅为特征值, 未经测试。

www.mcu.com.cn 24 / 27 V0.1.1

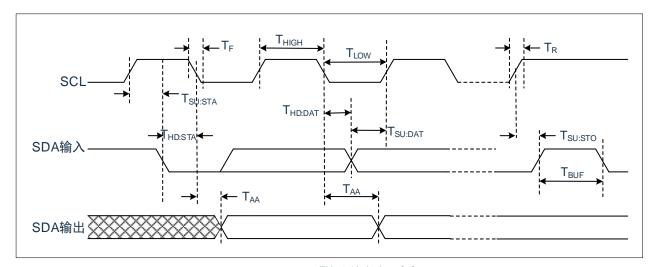
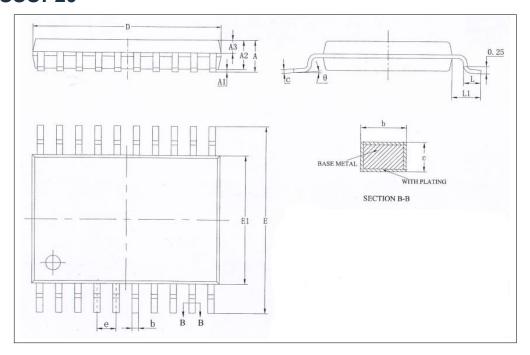


图 10-3: I²C™总线数据时序


符号	特性		条件	最小值	最大值	单位
T _{HIGH} 时钟	마셨호마고마건	100kHz 模式	器件工作频率不得低于 4MHz	4.0	-	us
	时钟高电平时间	400kHz 模式	器件工作频率不得低于 16MHz	0.6	-	us
TLOW 时報		100kHz 模式	器件工作频率不得低于 4MHz	4.7	-	us
	时钟低电平时间	400kHz 模式	器件工作频率不得低于 16MHz	1.3	-	us
_		100kHz 模式		1	1000	ns
T _R	SDA 和 SCL 上升时间	400kHz 模式	C _B 值规定在 10-400pF 之间	20+0.1C _B	300	ns
_	T _F SDA 和 SCL 下降时间	100kHz 模式		1	300	ns
lF		400kHz 模式	Св 值规定在 10-400pF 之间	20+0.1C _B	300	ns
T _{SU:STA}	启动条件建立时间	100kHz 模式	仅与重复启动条件相关	4.7	-	us
		400kHz 模式		0.6	-	us
T _{HD:STA}	启动条件保持时间	100kHz 模式	这个周期后产生第一个时钟脉冲	4.0	-	us
		400kHz 模式		0.6	-	us
_	**LID+A \ /D1+ p1.>	100kHz 模式		2/F _{sys}	-	us
T _{HD:DAT}	数据输入保持时间	400kHz 模式		2/F _{sys}	1-2/F _{sys}	us
T _{SU:DAT} 数:	数据输入建立时间	100kHz 模式		2/F _{sys}	-	us
		400kHz 模式		2/F _{sys}	-	us
T	停止条件建立时间	100kHz 模式		4.7	-	us
T _{SU:STO}		400kHz 模式		0.6	-	us
Таа	时钟输出有效时间	100kHz 模式		-	3.7-2/F _{sys}	us
		400kHz 模式		-	-	us
T _{BUF}	总线空闲时间	100kHz 模式	在新的传输开始前总线必须保持	4.7	-	us
		400kHz 模式	空闲的时间	1.3	-	us
Св	总线容性负载			-	400	pF

备注: 这些参数仅为特征值, 未经测试。

11. 封装

11.1 TSSOP20

Symbol	Millimeter				
Symbol	Min	Nom	Max		
Α	-	-	1.25		
A1	0.05	-	0.15		
A2	0.80	1.00	1.10		
A3	0.34	0.44	0.54		
b	0.20	-	0.28		
С	0.10	-	0.19		
D	6.40	6.50	6.60		
E	6.20	6.40	6.60		
E1	4.30	4.40	4.50		
е	0.65BSC				
L	0.45	0.60	0.75		
L1	1.00REF				
θ	0	-	8°		

注意: 封装尺寸不包括模的毛边凸起或门毛刺。

版本号	时间	修改内容
V0.1.0	2024年11月	初始版本
V0.1.1	2024年12月	更新 10.2 章节参数