

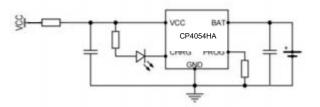
独立线性锂电池充电芯片 CP4054HA

1 产品特点

- 最高 32V 输入电压以及 6.9V 过压保护
- 无需 MOSFET、检测电阻器和隔离二极管
- 多种输出电压可供选择
- 待机.电.流<3uA
- 具有 BAT-VDD 防倒灌功能
- 支持 0V 电池充电
- 线性充电模式, 充电电流可达 0.6A
- 涓流/恒流/恒压三段式充电
- 充电电流外部可调
- 充电电流智能热调节
- 电池温度检测保护
- 自动再充电
- 充电状态指示
- 符合 IEC62368 最新标准
- SOT23-5封装

2 产品应用

- 移动电话充电座
- 便携式媒体播放
- 蓝牙耳机

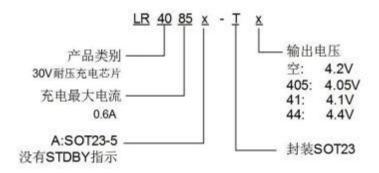

3 产品描述

CP4054HA一款高集成度、高性价比的单节锂离子 电池充电芯片。

CP4054HA采用恒定电流/恒定电压线性控制,只需 较少的外部元件数目,使得CP4054HA是便携式应用的 理想选择;同时,也可以适合 USB 电源和适配器电 源工作。

CP4054HA采用了内部 PMOSFET 架构,加上防倒充 电路,所以不需要外部检测电阻和隔离二极管。 热 反馈可对充电电流进行自动调节,以便在大功率操 作或高环境温度条件下对芯片温度加以限制。充满 电压固定于 4.2V。充电电流可通过PROG 脚外接一 个电阻设置,最高可达 0.6A。

当输入电压(交流适配器或 USB 电源)被拿掉时, CP4054HA自动进入一个低电流状态,电池漏电流 在 3uA 以下。CP4054HA的其他特点包括充电电流监控 器、输入过压保护、欠压闭锁、 自动再充电和两个 用于指示充电结束和输入电压接入的状态引脚。

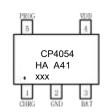

注意: VCC建议串接吸收限流电阻(0.5²2Ω) VCC和BAT建议添加旁路电容(1-10uF)

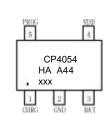
4 器件信息

规格型号	封装	丝印	输出电压
CP4054HAA-T	SOT23-5	CP405 4HA A xxx	4.2V
CP4054HAA-T405	SOT23-5	CP4054 HA A405 xxx	4.05V
CP4054HAA-T41	SOT23-5	CP4054 HA A41 xxx	4.1V
CP4054HAA-T44	SOT23-5	CP4054 HA A44 xxx	4.4V

5 订货信息

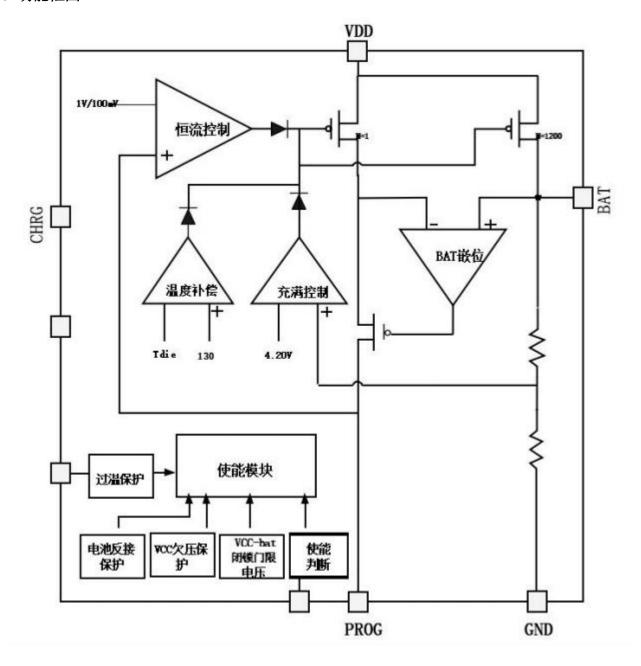
6 版本历史


• 新修订 A 版本规格书......2024/7/13


• 新修订 B 版本规格书.......2024/7/16

7 引脚定义和功能

PIN	Name	Function
1	CHRG	充电指示灯
2	GND	芯片地
3	BAT	电池输入端
4	VDD	电源输入端
5	PROG	充电电流调整端


深圳市创智辉电子科技有限公司

电话: 13632573531

网址: http://www.czhchip.com

8 功能框图

9 电气特性

9.1 极限参数

常温下测试(除非特殊说明)

Name	Function	Max	Unit
VDD	VDD 管脚输入电压	0 管脚输入电压 -0.3 ~ 32	
Vchrg	CHRG 管脚输入电压	-0.3 ~ 32	V
VBAT	BAT 管脚输入电压	-5 ~ 10	V
V _{PROG}	PROG 管脚输入电压	PROG 管脚输入电压 -0.3 ~ 6	
Тоат	工作温度	工作温度 -40 ~ +85	
Тмлт	最大结温度 150		$^{\circ}\mathrm{C}$
Тѕт	存储温度	-55 ~ 150	$^{\circ}\mathrm{C}$
R _{thJA}	封装热阻	58	°C/W
ESD (HBM)	人体模式静电等级	±2	KV

注2:最大极限值是指超出该工作范围,芯片有可能损坏。推荐工作范围是指在该范围内,器件功能正常,但并不完全保证满足个别性能指标。电气参数定义了器件在工作范围内并且在保证特定性能指标的测试条件下的电参数规范。对于未给定上下限值的参数,该规范不予保证其精度,但其典型值合理反映了器件性能。

9.2 电气参数

除非特殊说明, T_J = 25°C.

参数	符号	测·	试条件	最小值	典型值	最大值	单位
VDD 最大输入电压	VDD_MAX					32	V
VDD 工作电压	VDD			4.5	5.0	6.0	V
		充电模	式 (R _{PROG} =1K)	-	240	360	uA
		待机模式	(充电终止)	-	75	180	uA
输入电源电流	IVDD-IBAT	停机模式(R _{PROG} 未连接, VDD <vbat, VDD< VUVLO; CE=GND, OVP</vbat, 			75	180	uA
VDD 欠压闭锁门限	Vuv	VDD	从低到高	-	3.5	•	V
VDD 欠压闭锁迟滞	Vuv-HYS	VDD	从高到低	-	200	ı	mV
VDD 过压保护	Vovp	VDD	从低到高	6.3	6.9	7.5	V
VDD 过压保护迟滞	Vovp-hys	VDD	从高到低	-	500	ı	mV
VDD-VBAT 检测电压	Vasd	VDD 从低到高		-	200	ı	mV
VDD-VBAI 極測电压		VDD 从高到低		-	50	ı	mV
恒流时 PROG 电压	V _{PROG2}	VDD=5V, R _{PROG} =2K		0.85	1.00	1.15	V
BAT 端充电电流	Іват	VDD=5V VBAT=3. 95V R _{PROG} =2K			500		mA
		VDD 悬空, VBAT=4.0V		-	0.5	3	uA
涓流充电电流	Itrikl	VBAT <vt< td=""><td>RIKL R_{PROG}=2K</td><td></td><td>50</td><td></td><td>mA</td></vt<>	RIKL R _{PROG} =2K		50		mA
10/10 充电终止电流	I _{TERM}	R _{PROG} =2K			50		mA
涓流充电检测电压	VTRKL	VBAT 从低到高		2.600	2.800	3.000	V
涓流检测恢复迟滞	VTRHYS	VBAT 从高到低		-	150	-	mV
PROG 脚上拉电流	I _{PROG}			-	1	•	uA
充满检测电压	V _F LOAT	VDD=5V	CP4054HAA-T	4.15	4.2	4.25	V
			CP4054HAA- T405	4.01	4.05	4.09	V
		R _{PROG} =2K	CP4054HAA- T41	4.05	4.1	4.15	V
			CP4054HAA- T44	4.35	4.4	4.45	V

					July ZUZ+	ILV.D
再充电电池电压	VRECHARG	$V_{\text{FLOAT}} - V_{\text{RECHARG}}$	-	150	-	mV
充满检测延时	T _{DELAY}	I _{BAT} 将至 0.1 I _{CHRG} 以下	0.8	1.8	4.0	ms
再充电检测延时	TRECHARGE		0.8	1.8	4.0	ms
功率管导通阻抗	Rds_on	VBAT=3. 8V R _{PROG} =2K	-	1000	-	mΩ
CHRG 引脚输出 低电平	Vchrgl	I _{chre} =5 mA	-	1	2	V

注 3: 除特殊测试说明外, 电气参数均在 TA= +25℃条件下测试。

10 工作原理

CP4054HA是一款采用恒定电流/恒定电压算法的单节锂离子电池充电芯片。CP4054HA可以依靠一个 USB 端口或 AC 适配器工作,最大能够提供 0.6A 的充电电流。支持最高 32V 输入电压并具有6.9V 过压保护功 能。

10.1 正常充电循环

当 VDD 引脚电压升至 UVLO 门限电压以上且在 PROG 引脚与地之间连接了一个精度为 1%的电阻,然后一个电池与充电芯片输出端相连时,一个充电循环开始。如果 BAT 引脚电压低于 V_{TRKL},则充电芯片进入涓流充电模式。在该模式中,CP4054HA提供约 1/10 的设定充电电流,以便将电池电压提升至一个安全 的电压,从而实现满电流充电。当 BAT 引脚电压升至 V_{TRKL} 以上时,充电芯片进入恒定电流模式,此时向 电池提供恒定的充电电流。当 BAT 引脚电压达到最终浮充电压 V_{FLOAT} 时,CP4054HA进入恒定电压模式,且 充电电流开始减小。当充电电流降至设定值的1/10,充电循环结束。

10.2 充电电流的设定

充电电流是采用一个连接在 PROG 引脚与地之间的电阻来设定的。充电电流和设置电阻采用下列公式来计算:

R_{PROG} = 1000/I_{BAT} Ω

对于大于 0.5A 应用中, 芯片热量相对较大, 智能温度控制会降低充电电流, 不同环境测试电流与公式计算理论值也变的不完全一致。客户应用中, 可根据需求选取合适大小的 RPROG。

注 4: 规格书的最小、最大规范范围由测试保证,典型值由设计、测试或统计分析保证。

10.3 电池反接保护功能

CP4054HA内置锂电池反接保护功能,当锂电池反接于 CP4054HA输出引脚,CP4054HA会停机显示故障状态, 无充电电流,两个 LED 指示灯全灭,此时反接的锂电池漏电电流小于 0.5mA。将反接的电池正确接入, CP4054HA自动开始充电循环。反接后的 CP4054HA当电池去除后,由于 CP4054HA输出端BAT 管脚电容电位仍 为负值,则 CP4054HA指示灯不会立刻正常亮,只有正确接入电池可自动激活充电。或者等待BAT端电容负 电位的电量放光,BAT 端电位大于零伏,CP4054HA会显示正常的无电池指示灯状态。反接情况下,过高的 电源电压在反接电池电压情形下,芯片压差会超过 10V,故在反接情况下电源电压不宜过高。

10.4 充电指示功能 (CHRG)

CP4054HA 是漏极开路状态指示输出端CHRG 。当充电芯片处于充电状态时,CHRG 被拉到低电压, 当电池反接或者短路时和电池充满时,CHRG 处于低阻态。 当不用状态指示功能时,将不用的状态指示 输出端接到地。

充电状态	CHRG
正在充电	亮
电池充满	灭
过压, 欠压, 过温等故障状态	灭
VDD 接入,无电池	微亮

10.5 智能温控

如果芯片温度试图升至约 130℃的预设值以上 CP4054HA内部热反馈环路将减小设定的充电电流。 该功 能可防止芯片过热, 并允许用户提高给定电路板功率处理能力的上限而没有损坏CP4054HA的风险 。在保证 充电芯片将在最坏情况条件下自动减小电流的前提下,可根据典型环境温度来设定充电电流。

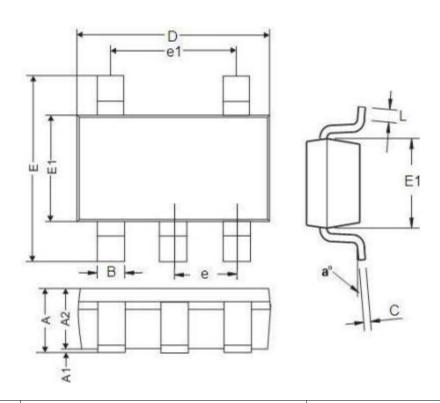
10.6 欠压闭锁

一个内部欠压闭锁电路对输入电压进行监控,并在 VDD 升至欠压闭锁门限以上之前使充电芯片保持在停机模式。UVLO 电 路将使充电芯片保持在停机模式。如果 UVLO 比较器发生跳变,则在 VDD 升至比电池电压高 200mV 之前充电芯片将不会退出停机模式。

10.7 自动再启动

一旦充电循环被终止,CP4054HA立即采用一个具有 1.8ms 滤波时间(TECHARGE) 的比较器 来对 BAT 引脚上的电压进行

连续监控。当电池电压降至 大致对应于电池容量的 80%至 90%以下时,充电循环重新开始。这确保了电池被维持在(或接近)一个满充电状态,并免除了进行周期性充电循环启动的需要。


深圳市创智辉电子科技有限公司

电话: 13632573531

网址: http://www.czhchip.com

11 封装信息(SOT23-5L)

参数	尺 (m		尺寸 (Inch)		
	最小值	最大值	最小值	最大值	
А	0.9	1.45	0.0354	0.0570	
A1	0	0.15	0	0.0059	
A2	0.9	1.3	0.0354	0.0511	
В	0.2	0.5	0.0078	0.0196	
С	0.09	0.26	0.0035	0.0102	
D	2.7	3.10	0.1062	0.1220	
E	2.2	3.2	0.0866	0.1181	
E1	1.30	1.80	0.0511	0.0708	
е	0.95REF		0.0374REF		
e1	1.90REF		0.0748REF		
L	0.10	0.60	0.0039	0.0236	
a ⁰	00	30°	00	30 ⁰	