PCI931xN/PCIe931xN系列 模拟量输出卡

产品使用手册

V6.00.03

■ 关于本手册

本手册为阿尔泰科技推出的 PCI931xN、PCIe931xN 模拟量输出卡的用户手册,其中包括快速上手、产品功能概述、设备特性、AO 模拟量输出、数字量输入输出、计数器功能、产品保修等。

文档版本: V6.00.03

■ 选型指南

型号	AO 模拟量输出		计数器	DIO		
至与	通道		速率	通道	Port0	Port1
PCI9310N	32 路	16bit	单通道最高 1MSps	2 路	2 路	8路PFI
PCI9311N	16 路	16bit	单通道最高 1MSps	2 路	2 路	8路PFI
PCI9312N	8 路	16bit	单通道最高 1MSps	1路	2 路	8路PFI
PCIe9310N	32 路	16bit	单通道最高 1MSps	2 路	2 路	8路PFI
PCle9311N	16 路	16bit	单通道最高 1MSps	2 路	2 路	8路PFI
PCle9312N	8 路	16bit	单通道最高 1MSps	1路	2 路	8路PFI

目 录

ー メ	卡于本	等册	1					
— Val	t was the	· · · ·						
型 逆	造型指	音	2					
1	快速	让手	7					
1.1	产品	包装内容	7					
1.2								
	1.2.1	· 注意事项						
	1.2.2	应用软件						
	1.2.3	软件安装指导						
	1.2.4	硬件安装指导	8					
1.3	设备	接口定义						
1.4	板卡	使用参数	8					
_								
2	功能	器概述	9					
2.1	产品	简介	9					
2.2	系统	框图	9					
	2.2.1	产品概述	9					
	2.2.2	AO 模拟量输出	10					
	2.2.3	DIO 数字量输入输出/PFI 功能可编程数字信号	11					
	2.2.4	计数器	12					
	2.2.5	+5V 输出	12					
	2.2.6	板卡功耗	12					
	<u>ነ</u> ኪ <i>አ</i> ታ	· 사소 사사	12					
– 3	以	特性	13					
3.1	板卡	外形图	13					
3.2	板卡	尺寸图	14					
3.3	接口	定义	16					
■ 1 4	A C	推州县於山	21					
- 4	AU) 模拟量输出	21					
4.1	AO J	力能框图	21					
4.2	AO信	言号连接	21					
4.3	AO 柞	AO 校准21						

4.4	AO 梦	数据格式及码值换算	22
4.5	AO F	内时钟和外时钟功能	22
	4.5.1	内时钟功能	22
	4.5.2	外时钟功能	23
	4.5.3	时钟输入输出的连接	23
4.6	AO 5	采样	23
	4.6.1	按需单点采样	23
	4.6.2	有限点采样	24
	4.6.3	连续采样	24
4.7	AO 角	触发功能	25
	4.7.1	触发信号的连接	25
	4.7.2	AO 触发功能框图	25
	4.7.3	软件触发功能	26
4.8	多卡	同步的实现方法	26
	4.8.1	RTSI_10M 时钟主从卡同步	26
	4.8.2	采用主从卡时钟级联	27
	4.8.3	采用共同的外触发	28
	4.8.4	采用共同的外时钟	28
■ 1 5	粉兮	≠長給入給山	20
5	数字	全量输入输出	29
5 5.1		全量输入输出 O 数字量输入输出功能框图	
	DI/D		29
5.1	DI/D DI 数	O 数字量输入输出功能框图	29
5.1 5.2 5.3	DI/D DI 数 DO 梦	O 数字量输入输出功能框图 汉字量输入的连接方式	29 29
5.1 5.2 5.3	DI/D DI 数 DO 梦	O 数字量输入输出功能框图 这字量输入的连接方式故字量输出的连接方式	29 30 31
5.1 5.2 5.3	DI/D DI 数 DO 数 内时	O 数字量输入输出功能框图 字量输入的连接方式 数字量输出的连接方式 钟与外时钟	29 30 31
5.1 5.2 5.3	DI/D DI 数 DO ^数 内时 5.4.1 5.4.2	O 数字量输入输出功能框图 字量输入的连接方式 数字量输出的连接方式 钟与外时钟 时钟输入输出的连接	29 30 31 31
5.1 5.2 5.3	DI/D DI 数 DO 数 内时 5.4.1 5.4.2 5.4.3	O 数字量输入输出功能框图	29 30 31 31
5.1 5.2 5.3 5.4	DI/D DI 数 DO 数 内时 5.4.1 5.4.2 5.4.3	O 数字量输入输出功能框图	29 30 31 31 31
5.1 5.2 5.3 5.4	DI/D DI 数 DO ³ 内时 5.4.1 5.4.2 5.4.3 DI 采	O 数字量输入输出功能框图	293131313132
5.1 5.2 5.3 5.4	DI/D DI 数 DO 数 内时 5.4.1 5.4.2 5.4.3 DI 采 5.5.1	O 数字量输入输出功能框图	293131313232
5.1 5.2 5.3 5.4	DI/D DI 数 内时 5.4.1 5.4.2 5.4.3 DI 采 5.5.1 5.5.2 5.5.3	O 数字量输入输出功能框图	29313131323232
5.1 5.2 5.3 5.4	DI/D DI 数 内时 5.4.1 5.4.2 5.4.3 DI 采 5.5.1 5.5.2 5.5.3	O 数字量输入输出功能框图	29313131323232
5.1 5.2 5.3 5.4	DI/D DI 数 DO 数 内时 5.4.1 5.4.2 5.4.3 DI 采 5.5.1 5.5.2 5.5.3	O 数字量输入输出功能框图	29303131313232323333
5.1 5.2 5.3 5.4	DI/D DI 数 内时 5.4.1 5.4.2 5.4.3 DI 采 5.5.1 5.5.2 5.5.3 DO 5 5.6.1 5.6.2	O 数字量输入输出功能框图	293131313232333333

6	CTR	计数器	36
6.1	边沿记	计数	36
	6.1.1	计数方向控制	36
	6.1.2	边沿计数	36
	6.1.3	计数重置	37
6.2	频率	则量	37
	6.2.1	测量低频信号	37
	6.2.2	测量高频信号	37
	6.2.3	测量大范围信号	38
6.3	半周期	期测量	38
6.4	脉冲流	则量	39
	6.4.1	单脉冲测量	39
	6.4.2	隐式缓冲脉冲测量	39
	6.4.3	采样时钟缓冲脉冲测量	40
	6.4.4	脉冲与半周期测量	40
6.5	脉宽测	则量	40
6.6	两边沟	沿间隔测量	41
6.7	编码	器	41
	6.7.1	利用正交编码器测量	42
	6.7.2	利用双脉冲编码器测量	42
	6.7.3	利用单脉冲编码器测量	43
	6.7.4	Z 索引	43
6.8	脉冲轴	输出	43
	6.8.1	单脉冲生成	43
	6.8.2	具有启动触发的单脉冲生成	44
	6.8.3	有限脉冲序列生成	44
	6.8.4	可重触发的脉冲或脉冲序列生成	44
	6.8.5	连续脉冲序列生成	45
6.9	数字》	滤波	46
6.1	0 输出	· 事件	46
	6.10.1	脉冲方式	46
	6.10.2	反转方式	46
1 7	保修	· · · · · · · · · · · · · · · · · · ·	48
7.1	保修.		48
7 2		古持与服久	18

ART Technology

7.3	返修注意	意事项		 48
附	录 A ・	各种标识、	概念的命名约定	49

■ 1 快速上手

本章主要介绍初次使用 PCI / PCIe 931xN 需要了解和掌握的知识,以及需要的相关准备工作,可以帮助用户熟悉 PCI / PCIe 931xN 使用流程,快速上手。

1.1 产品包装内容

打开 PCI / PCIe 931xN 板卡包装后,用户将会发现如下物品:

- PCI / PCIe 931xN 板卡一个。
- 阿尔泰科技软件光盘一张,该光盘包括如下内容:
 - 1)、本公司所有产品软件安装包,用户可在光盘中找到 ArtDAQ 安装包。
 - 2)、用户手册(pdf格式电子版文档)。

1.2 安装指导

1.2.1 注意事项

- 1)、先用手触摸机箱的金属部分来移除身体所附的静电,也可使用接地腕带。
- 2)、取卡时只能握住卡的边缘或金属托架,不要触碰电子元件,防止芯片受到静电的危害。
- 3)、检查板卡上是否有明显的外部损伤如元件松动或损坏等。如果有明显损坏,请立即与销售 人员联系,切勿将损坏的板卡安装至系统。

板卡不可以在系统带电的情况下插拔!

1.2.2 应用软件

用户在使用 PCI / PCIE 931xN 时,可以根据实际需要安装相关的应用开发环境,例如 Microsoft Visual Studio、NI LabVIEW 等。

ArtDAQ 是北京阿尔泰科技发展有限公司采集设备的驱动程序及开发套件,用以实现从简单到复杂的数据采集任务,高效快速搭建测试系统。

- 支持大多数 ART 硬件设备。
- 支持的操作系统: Windows 10/8/7/XP, LabVIEW RT (Linux 的支持情况,请致电技术支持 咨询 400-860-3335)。
- 支持的编程语言和平台有: C/C++, LabVIEW 等。
- 提供 VC、C#、Labview 的编程范例程序,在{ART Technology Directory\ArtDAQ\Sample} 目录中可以找到。
- 设备驱动提供的 dll,可以在 Windows 平台下的几乎任何编程环境中使用。

1.2.3 软件安装指导

在不同操作系统下安装 PCI / PCIE 931xN 的方法一致。

第一步:将产品包装中附带的光盘。插入光驱中,等待识别到光盘后,可查找到 ArtDAQ 软件 安装包;如果您的硬件平台设备没有光驱,请从阿尔泰科技官网下载 ArtDAQ 软件安装包,链接地址: http://www.art-control.com/。

ART Technology

第二步:双击 ArtDAQ 软件安装包,进入安装向导,按照向导提示进行每一步安装即完成。

1.2.4 硬件安装指导

将 PCI / PCIE 931xN 正确安装在 PCI / PCIe 卡槽中,安装成功后开机,系统会自动安装驱动,若未成功安装驱动按下述方法操作。

- 1)、打开 DMC(设备管理配置工具)。
- 2)、选中要安装的设备,右击选择'更新驱动',按向导提示进行下一步安装即完成。

1.3 设备接口定义

PCI / PCIe 931xN 相关接口信息可以参见本手册《接口定义》章节。

1.4 板卡使用参数

- ◆ 工作温度范围: 0°C ~ 50°C
- ◆ 工作相对湿度范围: 10% ~ +90%RH(无结露)
- ◆ 存储相对湿度: 5% ~ +95% RH (无结露)
- ◆ 存储温度范围: -20℃ ~ +70℃

■ 2 功能概述

本章主要介绍 PCI / PCIe 931xN 的系统组成及基本特性,为用户整体了解 PCI / PCIe 931xN 的相关特性提供参考。

2.1 产品简介

PCI931xN、PCIe931xN 系列是本公司推出的 PCI 总线与 PCIe 总线的高密度模拟量输出卡。该系列板卡提供最高 32 路 AO 模拟量同步输出,支持 2 路带缓冲数字 I/O,8 路 PFI 可编程数字信号,及 2 路或 1 路 32 位多功能计数器。

此系列板卡的主要应用场合为: 电子产品质量检测、信号采集、过程控制、伺服控制。

2.2 系统框图

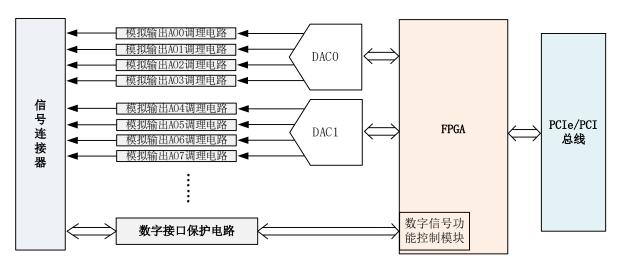


图 2-2-1 PCI / PCIe 931xN 系统框图

PCI / PCIe 931xN 系统框图主要由 DAC 模块、模拟信号调理电路、数字信号输入输出、FPGA 控制模块等组成。

AO 部分的模拟信号调理电路实现对 DAC 输出进行放大、阻抗变换等功能。

数字信号保护电路实现对数字输入输出信号进行电平转换、过压限流保护等功能。

2.2.1 产品概述

产品型号	PCI931xN、	PCIe931xN	
总线类型	PCI 总线	PCIe 总线	
板卡尺寸	167.7mm(长) * 106.7mm(宽)	167.67mm(长) * 112mm(宽)	
产品系列	模拟量输出卡		
支持操作系统	XP、Win7、Win8、Win10		

2.2.2 AO 模拟量输出

产品型号	PCI / PCIe 9310N	PCI / PCIe 9311N	PCI / PCIe 9312N
通道数	32	16	8

AO 其他共同参数:

分辨率	16 位			
增益误差	±0.05% Max @ FSR			
偏移误差	±1LSB Max			
差分非线性误差	2LSB			
采样方式	同步输出			
输出范围	±10V			
输出通道	32路/16路/8路 (分	分为组,每4个	通道为一组)	
		1通道	最高 1MSps	
壮 独 违 变	复加力估处通送粉	2 通道	最高 700KSps	
转换速率	每组内使能通道数	3 通道	最高 500KSps	
		4 通道	最高 350KSps	
输出耦合方式	直流耦合			
输出阻抗	0.2Ω			
驱动电流	最大 10mA			
建立时间	10uS			
压摆率	8V/uS			
	幅度	12mV		
输出更新瞬时脉冲	持续时间	2us		
	能量	10nVs		
过压保护	±12V			
限流保护	20mA			
上电状态	±30mV			
上电/断电瞬时脉冲	3.2Vpeak(20ms 内)	1		
存储器深度	32K 字(点)FIFO 存储器			
数据传输方式	DMA			
采样模式	按需单点采样、有限	! 点采样、连续?	采样	
触发源	软件强制触发、DTF	2 数字触发		
DTR 输入范围	标准 TTL 电平			
时钟源	内时钟、外时钟			
外时钟输入范围	<= 1MHz,TTL 电平	<= 1MHz,TTL 电平信号		

2.2.3 DIO 数字量输入输出/PFI 功能可编程数字信号

通道数	Port 0 (P0.<01>): 2 路支持带缓存 DIO				
	PFI <07>/P1<07>: 8 路复用 PFI 通道				
电气标准	TTL 兼容				
配置方式	程控 I/O 方向与状态				
	÷4. w	最大电压	5V		
44 > \m#41 .1. T	高电平	最小电压	3V		
输入逻辑电平	水土豆	最大电压	0.8V		
	低电平	最小电压	0V		
	全 上亚	最大电压	5.1V @<1mA		
Source 电流输出	高电平	最小电压	4.46V @16.5mA		
逻辑电平	14 中立	最大电压	0.1V		
	低电平	最小电压	0V		
	声 4. 亚	最大电压	5.1V		
Sink 电流输出	高电平	最小电压	4.9V		
逻辑电平		最大电压	0.53V @16.5mA		
	低电平	最小电压	0V @<1mA		
最大输入范围	0V∼5V	•			
存储器深度	2K 字节 (点)	FIFO 存储器			
输入/输出速率	10MHz				
下拉电阻	10ΚΩ				
外时钟范围	0~5MHz				
单通道最大驱动能力	-20mA @Source 电流				
, ACCORDING OF THE PROPERTY OF	25mA @Sink 电流				
过压保护	-5V~+10V				
采样方式	按需单点采样、	有限点采样、	连续采样		

数字量输入输出 Port1、Port2、Port3 不支持有限点采样、连续采样方式。

①设备未上电时,请勿连接超过 3.3V 的外部电压至 DIO 通道,以及正常工作时勿长时间超出工作范围,以免损害设备的长期可靠性。

②为降低板卡功耗,建议 DO 使用 Sink 方式。

2.2.4 计数器

产品型号	PCI / PCIe 9310N	PCI / PCIe 9311N	PCI / PCIe 9312N
通道数	2	2	1

计数器其他共同参数

计数器位数	32 位
计数器功能	CI: 边沿计数、频率测量、周期测量、半周期测量、脉宽测量、双边沿间隔测量、线性位置测量、角度位置测量
	CO: 脉冲输出
计数器源	PFI0~PFI7
最大输入频率	5MHz
最小电平脉宽	100nS
电气标准	TTL 电平
可长子子	CI: 按需单点采样、有限点采样、连续采样
采样方式	CO: 按需单点采样、有限点采样、连续采样
CI存储器深度	2K 双字(点)FIFO 存储器
CO 存储器深度	

2.2.5 +5V 输出

输出电压	$+5.0V \pm 0.2V$
带载能力	200mA
负载调整率	3.3%
其他保护	过载后自动保护
软件开关	支持

板卡侦测到+5V 输出过载后自动关闭电源输出,1 秒钟后重新打开,若仍有过载再次关闭 1 秒钟,以此循坏,直至无过载。

2.2.6 板卡功耗

PCIe 931x N

电压	典型值(mA)	最大值(mA)
+12V	200	250

PCI 931x N

电压	典型值(mA)	最大值(mA)
+12V	80	100
+5V	200	300

■ 3 设备特性

本章主要介绍 PCI / PCIe 931xN 相关的设备特性,主要包括板卡尺寸信息、板卡外形图、接口定义,为用户在使用 PCI / PCIe 931xN 过程中提供相关参考。

3.1 板卡外形图

图 3-1-1 PCIe9311N

图 3-1-2 PCI 9312N

3.2 板卡尺寸图

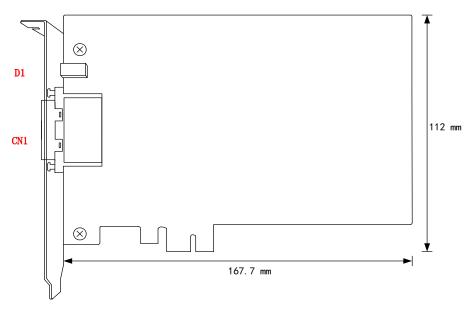


图 3-2-1 PCIe 9310N / 9311N 尺寸图

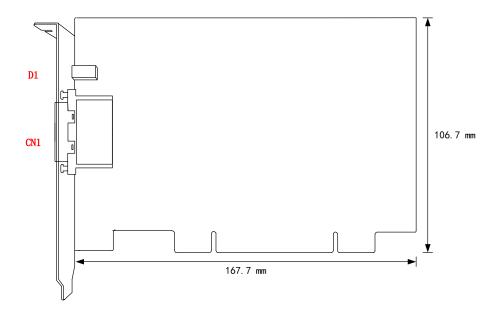


图 3-2-2 PCI 9310N / 9311N 尺寸图

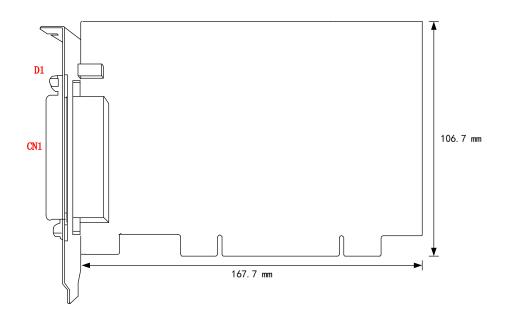


图 3-2-3 PCI 9312N 尺寸图

D1: 工作状态指示灯

绿色: 总线通信状态指示灯, 正确安装驱动后常亮;

橙色: 任务运行状态指示灯, AO 工作时闪烁。

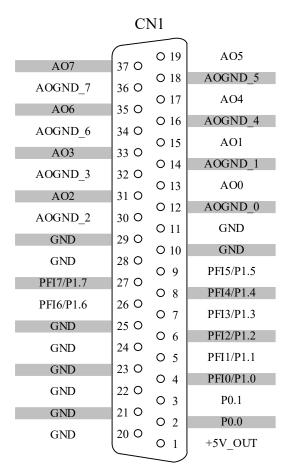
CN1: 模拟、数字信号输入输出连接器

3.3 接口定义

CN1					
10000 00/04		04	1		
AOGND 30/31	68	34	A031		
A030	67		AOGND 28/29		
A029	66	32	A028		
AOGND 26/27	65	31	A027		
A026	64	30	AOGND 24/25		
A025	63	29	A024		
AOGND 22/23	62	28	A023		
A022	61	27	AOGND 20/21		
A021	60	26	A020		
AOGND 18/19	59	25	A019		
A018	58	24	AOGND 16/17		
A017	57	23	A016		
NC	56	22	A015		
AOGND 14/15	55	21	A014		
A013	54	20	AOGND 12/13		
A012	53	19	NC		
A011	52	18	AOGND 10/11		
A010	51	17	A09		
AOGND 8/9	50	16	A08		
AOGND 6/7	49	15	A07		
A06	48	14	AOGND 4/5		
A05	47	13	A04		
AOGND 2/3	46	12	A03		
A02	45	11	AOGND 0/1		
A01	44	10	A00		
DGND	43	9	PFI7/P1.7		
DGND	42	8	PFI 6/P1. 6		
DGND	41	7	PFI5/P1.5		
PF14/P1.4	40	6	PFI3/P1.3		
DGND	39	5	PFI2/P1.2		
PFI1/P1.1	38	4	PFI 0/P1.0		
DGND	37	3	P0. 1		
DGND	36	2	P0. 0		
DGND	35	1	+5V_0UT		
	_	_	/		

PCI 9310N / PCIe 9310N

图 3-3-1 PCI 9310N/ PCIe 9310N 连接器定义图



	CN	N 1	$\overline{}$	
NC	68	34		NC
NC	67	33		NC
NC	66	32		NC
NC	65	31		NC
NC	64	30		NC
NC	63	29		NC
NC	62	28		NC
NC	61	27		NC
NC	60	26		NC
NC	59	25		NC
NC	58	24		NC
NC	57	23		NC
NC	56	22		A015
AOGND 14/15	55	21		A014
A013	54	20		AOGND 12/13
A012	53	19		NC
A011	52	18		AOGND 10/11
A010	51	17		A09
AOGND 8/9	50	16		A08
AOGND 6/7	49	15		A07
A06	48	14		AOGND 4/5
A05	47	13		A04
AOGND 2/3	46	12		A03
A02	45	11		AOGND 0/1
A01	44	10		A00
DGND	43	9		PFI7/P1.7
DGND	42	8		PFI6/P1.6
DGND	41	7		PFI5/P1.5
PFI4/P1.4	40	6		PFI3/P1.3
DGND	39	5		PFI 2/P1. 2
PFI1/P1.1	38	4		PFI 0/P1.0
DGND	37	3		P0. 1
DGND	36	2		P0. 0
DGND	35	1		+5V_0UT

PCI 9311N / PCIe 9311N

图 3-3-2 PCI 9311N/ PCIe 9311N 连接器定义图

PCI 9312N/ PCIe 9312N

图 3-3-3 PCI 9312N/ PCIe 9312N 连接器定义图

表 3-3-1: 管脚功能概述

信号名称	管脚特 性	管脚功能概述			参考地
AO0~AO31	Output	模拟输出	模拟输出 AO模拟量输出		AOGNDx/y
		静态数字量输入/输出			
		时序输入/	时序输入/ 外时钟输入/输出		
		输出信号 外部数字触发		发信号输入/输出	
			PFI0: A/SRC		
		计数器输入控制/输出信号	CNT0	PFI1: B/GATE	DGND
PFI <07>/P1<07>	Input/			PFI2: Z/AUX	
	Output			PFI3: OUT	
			G) VEL	PFI4: A/SRC	
				PFI5: B / GATE	
		CNT1	PFI6: Z/AUX		
				PFI7: OUT	

Port 0 (P0.<01>)	Input/ Output	可配置为静态数字量输入/输出,或带缓存数字波形采集/生成方式。	DGND
+5V_OUT	Power	+5V 电源输出	DGND
DGND	GND	数字信号地	
AOGNDx/y	GND	模拟输出信号地(对应AOx与AOy)	

注: AO 输出应以尾缀号相对应的 AOGND 为参考地,否则多通道输出时会增大通道间的串扰。

表 3-3-2: 计数器各功能引脚分配

24.20 21. <i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	SRC	边沿计数的源输入输入引脚	
边沿计数	AUX	计数方向外部控制输入引脚	
脉宽测量	GATE	被测信号输入引脚	
周期测量	GATE	被测信号输入引脚	
频率测量	GATE	被测信号输入引脚	
半周期测量	GATE	被测信号输入引脚	
双油加 加厚	SRC	第一个有效边沿输入引脚	
双边沿间隔 GATE		第二个有效边沿输入引脚	
编码器测量(线性	A	编码器通道 A 输入引脚	
位置测量和角度位	В	编码器通道 B 输入引脚	
置测量)	Z	编码器通道 Z 输入引脚	
脉冲输出	OUT	脉冲输出引脚	

P1: RTSI 的 Pinout 如图 3-2-3 所示,具体 Pinout 引脚如表 3-3-3 所示

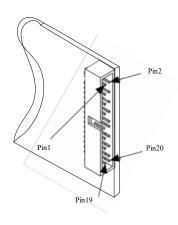


图 3-3-4 RTSI 的 Pinout 图

表 3-3-3:

RTSI 信号	Pinout
RTSI_0	1
RTSI_1	3

ART Technology

RTSI_2	5	
RTSI_3	7	
RTSI_4	9	
RTSI_5	11	
RTSI_6	13	
RTSI_7	15	
RTSI_8	17	
RTSI_10M	19	
GND	2、4、6、8、10、12、14、16、18、20	

■ 4 AO 模拟量输出

本章主要介绍 PCI / PCIe 931xN 模拟量输出的相关性质,主要包括 AO 模拟量输出功能框图、AO 信号连接、AO 校准、AO 触发等,为用户在使用 PCI / PCIe 931xN 过程中提供相关参考。

4.1 AO 功能框图

PCI / PCIe 931xN 的模拟输出部分主要由放大器、数模转换模块、AO 控制逻辑等组成。

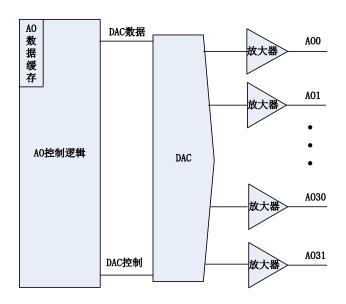


图 4-1-1 AO 功能框图

4.2 AO 信号连接

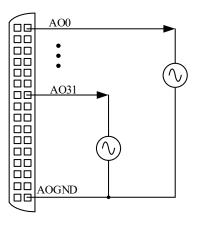


图4-2-1 AO模拟量输出连接

4.3 AO 校准

AO 校准为软件自动校准。

在 AO 校准开始前,请至少将采集卡预热 15 分钟,且自动校准时,采集卡不要连接任何外部信号,即直接将连接到板卡接口的信号线拔下即可。

4.4 AO 数据格式及码值换算

PCI / PCIe 931xN AO 模拟量输出量程为±10V。

表 4-4-1: 模拟量输出的数据格式

以 · · · · · · · · · · · · · · · · · · ·				
输入	DA原始码(二进制)	DA原始码(十六进制)	DA原始码(十进制)	
正满度	1111 1111 1111 1111	FFFF	65535	
正满度-1LSB	1111 1111 1111 1110	FFFE	65534	
中间值+1LSB	1000 0000 0000 0001	8001	32769	
中间值 (零点)	1000 0000 0000 0000	8000	32768	
中间值-1LSB	0111 1111 1111 1111	7FFF	32767	
负满度+1LSB	0000 0000 0000 0001	0001	1	
负满度	0000 0000 0000 0000	0000	0	

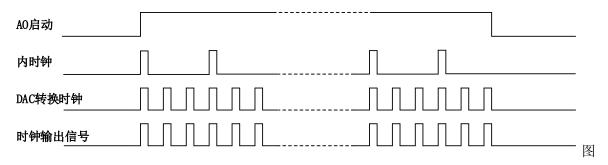
AO生成的模拟数据主要直接调用 AI_WriteAnalog()函数以电压双精度浮点数的形式写入生成任务中。

如果用户调用 AI_WriteBinary()函数将二进制原码数据写入生成任务,可以有两种方法将用户电压值转换为二进制原码值:

方法一、根据生成量程挡位 nSampleRange 调用 AO_ScaleVoltToBin()函数进行电压值到二进制原码的隐式转换,然后再将转换后的二进制原码数据通过调用 AO_WriteBinary()写入生成任务中。

方法二、根据生成量程挡位 nSampleRange 调用 AO_GetRangeInfo()函数获得换算系数后进行对每个电压数据换算为二进制原码进行显式转换。换算公式:

nBinArray[n] = (U16)((fAnlgArray[n]-RangeInfo.fOffsetVolt)/RangeInfo.fCodeWidth + RangeInfo.nCodeCount/2);



为了简化用户设计,建议使用 AO_WriteAnalog() 函数直接写入电压值,省去 AO 码值换算环节

4.5 AO 内时钟和外时钟功能

4.5.1 内时钟功能

AO 内时钟功能是根据用户指定的分频数将板载时钟振荡器经板载逻辑控制电路分频后产生的时钟信号去定时触发 DA 进行转换。

4-5-1 内时钟时序图

4.5.2 外时钟功能

AO 外时钟功能是指使用板外时钟信号来定时触发 DA 进行转换。

该时钟信号通过板外时钟输入管脚接入。板外时钟信号可以是另外一块板卡的时钟输出,也可以是其他设备如时钟频率发生器等。

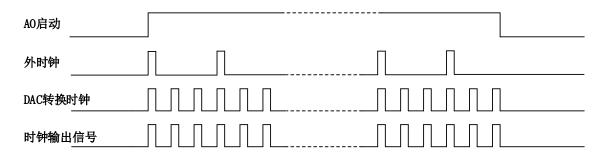


图 4-5-2 外时钟时序图

4.5.3 时钟输入输出的连接

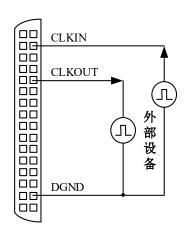


图 4-5-3 时钟输入输出的连接

4.6 AO 采样

本板卡 AO 采样支持按需单点采样、有限点采样、连续采样。

4.6.1 按需单点采样

按需单点采样可简单、方便的实现各通道单个点的采样,如图 4-6-1 所示。

按需单点采样功能是指用户根据需求,随时可以获取各通道一个采样点的功能。该功能主要针对简单采样或采样实时性要求较高、数据量很少且采样时间不确定的应用中。采集实时性较高可方便的用于 PID、PLC 等实时快速的伺服闭环控制系统等场合。用户在每发出单点的写命令(AO_WriteAnalog()或 AO_WriteBinary())后,PC 机将输出的 AO 数据通过 PCI/PCIe 总线迅速的传给设备,设备快速的完成一次 DA 转换,从各通道输出一个电压值。

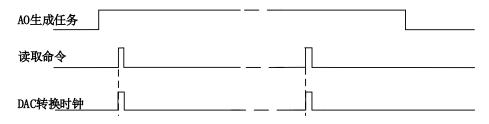


图4-6-1 按需单点采集

在按需单点采样模式下,AO 启动并被触发后,以 AO 最大采样频率作为转换时钟,PC 机每发送一次数据,各通道同步转换出相对电压值。

- ① 在按需单点采样下, AO 转换频率受控于 AO 最大采样频率, 而 AO 的采样速率则受制于用户的单点写命令。
- ② 在按需单点采样下, 时钟输出 CLKOUT 无效。

4.6.2 有限点采样

有限点采样功能是指 AO 在采样过程中,以设置的采样速率扫描各采样通道,生成过程中不停顿,每通道各生成预设点数后自动停止生成的方式。如图 4-6-2 所示。

有限点采样用在已知采样总点数或采样总时间的采样任务中,尤其是用在带有触发的采样任务中。例如:需要在触发信号开始之后输出 2 秒钟长度的数据,使用有限点采样方式可以很方便的实现此需求。使用时,需要指定每通道的采样长度,或将需要采集的时间根据采样速率转换为每通道的采样长度。

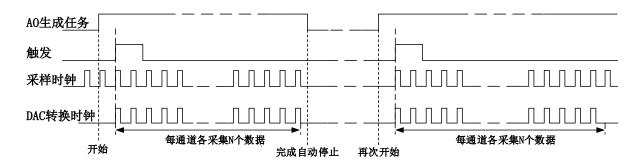


图4-6-2 内、外时钟有限点采样

在有限点采样模式下,AO 启动后等待触发事件,被触发后,PC 机将数据通过 PCI/PCIe 总线传输到设备,以预设的时钟(图 4-6-2)作为 AO 采样时钟,各通道同步输出,每通道各输出 N 个数据完成后,至此完成一次有限点采集。若再次启动 AO 采样任务,等待触发事件,重复上述动作直至停止采集。

- **②** ① 在内时钟有限点采样模式下,AO 转换频率为设置的内时钟频率。
- ② 在外时钟有限点采样模式下,AO 转换频率为外时钟频率,其频率不能大于 AO 的最大采样频率 。

4.6.3 连续采样

连续生成功能是指 AO 在生成过程中每相邻两个生成点的时间相等,采集过程中不停顿,连续不间断的输出,直到用户主动停止生成任务。如图 4-6-3 所示。

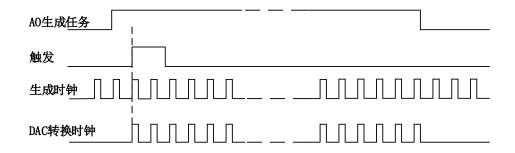


图4-6-3 内、外时钟连续生成

在连续生成模式下,AO 启动并开始触发后,以预设的内时钟或外时钟(图 4-6-3)作为AO 生成时钟,各通道同步输出,生成完成后,继续同步输出,以此循环直到用户停止AO 采集。

-) ① 在内时钟连续生成模式下,AO 转换频率为设置的内时钟频率。
- ② 在外时钟连续生成模式下, AO 生成频率为外时钟输入频率, 其频率不能大于 AO 的最大生成频率。

4.7 AO 触发功能

4.7.1 触发信号的连接

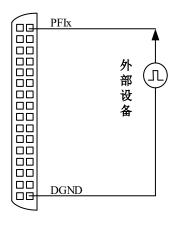


图 4-7-1 触发信号连接

4.7.2 AO 触发功能框图

PCI / PCIe 931xN 支持软件触发、数字触发。各种触发源通过软件选择。

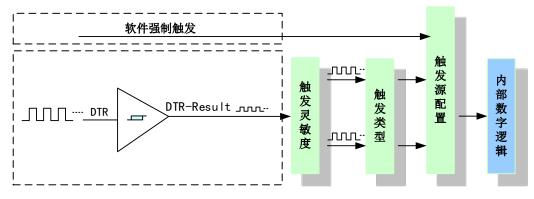


图 4-7-2 触发功能框图

当用户使能外部数字DTR触发、软件强制触发时,各触发信号满足触发条件即可生效,各触发为或的关系。

理想中的DTR信号是没有抖动的。但实际中的DTR信号会有很大的抖动,设置触发灵敏度可以很好的抑制抖动。如下图4-7-3所示:

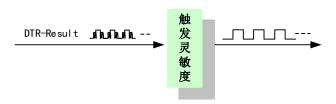


图 4-7-3 触发灵敏度

4.7.3 软件触发功能

在软件触发采集模式下,点击"开始采集"按钮,AO 并不立刻输出,而是要等待软件触发信号到来后才开始输出,如图 4-7-4 所示。

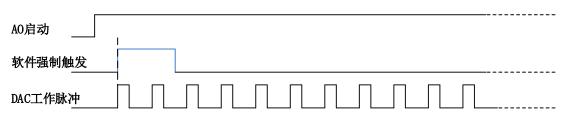


图4-7-4 AO软件触发

4.8 多卡同步的实现方法

PCI/PCIE 931xN多卡同步可以有四种方案,第一: RTSI_10M时钟主从卡同步(推荐),第二: 采用主从卡时钟级联,第三: 采用共同的外触发,第四: 采用共同的外时钟。

4.8.1 RTSI 10M 时钟主从卡同步

PCI/PCIE 931xN通过将主卡的板载10M时钟信号经过缓冲器输出,作为从卡的输入时钟源,实现多张板卡的输入时钟源同频同相位,再配合使用DTR外触发来实现多卡同步。

参数设置及操作步骤:主卡时钟选择为板载10M,从卡时钟选择为RTSI_10M,开始触发类型为数字触发,主从卡的触发源、触发方向均设置一致;启动所有板卡的采集任务,此时所有板卡处于等待触发状态,直到PFIx满足触发条件,所有板卡同时开始采集。该方式因输入时钟源同频同相位,随着采集时间的推移,不会出现累积误差。

米用RTSI 10M时钟主从卡同步功能参数的

100 - 100 -			
	主卡参数配置	从卡参数配置	
参考时钟	板载10M	RTSI_10M	
采样时钟	内时钟	内时钟	
触发源选择	数字触发	数字触发	
触发方向	上升、下降、上升下降均触发	同主卡设置一样	

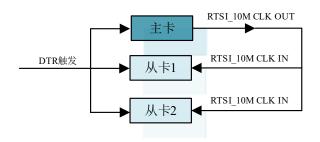


图 4-8-1 采用 RTSI 10M 时钟主从卡同步的级联方式(推荐)

若在 RTSI 10M 时钟主从卡同步功能上使用 RTSI TRIG 触发,则需按下述配置与操作:

主卡使能 TRIG_x 触发输出端口,从卡触发源选择与主卡输出一致的 TRIG_x 端口;待主卡、从卡按相应的时钟源模式初始化完成后,先启动所有从卡,从卡进入等待状态,直到主卡启动的同时所有从卡才被启动,即实现了多卡同步。这种连接方式主从卡同步输出存在微秒级的误差,这是因为主卡启动采集任务后输出 TRIG 触发信号并立即更新输出电压,而从卡获取到该 TRIG 触发信号,触发成功后才更新输出电压,故从卡落后于主卡。

采用RTSI	10M时钟、	RTSI	TRIG触发	主从-	卡同步功能参数设置:
/K/ 1111101	I OTATH 1 N I	1(1)1		//	1172分配多数久重・

TO THE STATE OF TH					
	主卡参数配置	从卡参数配置			
参考时钟 板载10M		RTSI_10M			
采样时钟	内时钟	内时钟			
同步触发信号输出	TRIG0—TRIG7	无			
触发源选择	软件触发、数字触发	同主卡同步触发信号输出设置一样			
触发方向	上升、下降、上升下降均触发	上升沿触发			

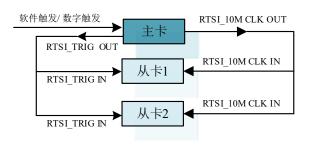


图 4-8-2 采用 RTSI_TRIG 触发主从卡同步的级联方式

4.8.2 采用主从卡时钟级联

采用主从卡时钟级联时,置主卡为内时钟源模式,从卡为外时钟源模式,按图 4-8-3 连接主从卡。 先启动所有从卡,由于主卡没有被启动,此时主卡没有输出时钟信号,所以从卡进入等待状态,直 到主卡被启动时所有板卡才开始同时动作,实现了多卡同步采样的功能。这种连接方式主从卡同步 输出也存在微秒级的误差,从卡落后于主卡。

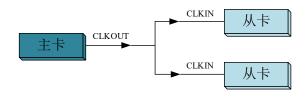


图 4-8-3 主从卡时钟级联同步采集的级联方式

4.8.3 采用共同的外触发

采用共同的外触发时,使能外部数字触发,置所有板卡的配置参数保持一致,所有板卡从 PFIx 管脚接入同一个触发信号。启动所有板卡,此时板卡进入等待状态,直到触发信号满足条件时所有板卡才开始同时。这种连接方式实现了多卡同步采样的功能,但是每块板卡的板载晶振实际输出频率会有微小的差别,因此主控芯片的输入时钟源并非同频同相位,随着采集时间的推移,会出现累积误差。

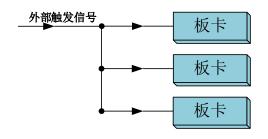


图 4-8-4 外触发同步采集的连接方式

4.8.4 采用共同的外时钟

采用共同的外时钟时,置时钟源为外部时钟源,且所有板卡的所有配置参数应保持一致。连接 好被采信号,启动所有板卡,此时板卡进入等待状态,直到外部时钟信号接入时所有板卡才开始同 时更新输出电压。这种连接方式实现了多卡同步采样的功能。但应注意提供的外部时钟信号需要频 率稳定没有抖动。

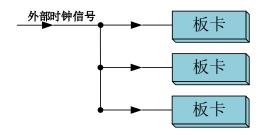


图4-8-5 外时钟同步采集的连接方式

■ 5 数字量输入输出

本章主要介绍 PCI / PCIe 931xN 数字量输入输出的相关性质,主要包括数字量输入输出功能框图、信号连接等,为用户在使用 PCI / PCIe 931xN 过程中提供相关参考。

5.1 DI/DO 数字量输入输出功能框图

PCI / PCIe 931xN 包含 2 路带缓冲功能的 I/O 及 8 路多功能复用的 I/O。其中 Port0 的每个端子可配置为输入或者输出,且带有缓冲器,用户可采集或者输出连续的数字信号。PFI 的每个端子不但都可以作为输入或输出,用户可任意配置,也可作为复用功能控制。

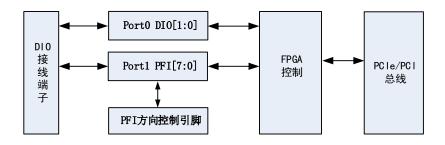
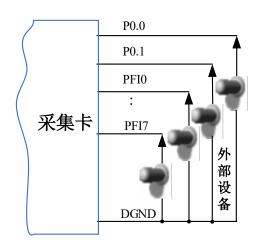
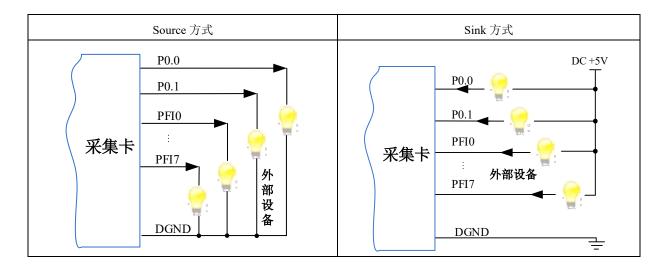


图5-1-1 DIO功能框图

输入输出电路保护: PCI/PCIe 931xN 的所有数字输入输出接口均具备电路保护功能,以避免设备在过压、静电释放的情况下遭到损坏。

5.2 DI 数字量输入的连接方式




图5-2-1 DI 数字量输入的连接

用户若将超出最大数字输入电压范围的信号连接至板卡会造成数据采集失真甚至设备损坏, 由此造成的损坏本公司不承担任何责任。

5.3 DO 数字量输出的连接方式

为降低板卡功耗,建议 DO 使用 Sink 方式。

当用户需驱动高电压或大电流设备时(比如 24V 继电器),需要用户自行设计外围驱动电路,可使用三极管驱动方式,如图 5-3-1, $Ic \approx VCC/R_L$ (R_L 为继电器内阻),用户使用时一定要注意 Ic 要小于三极管 VT 的最大集电极电流。

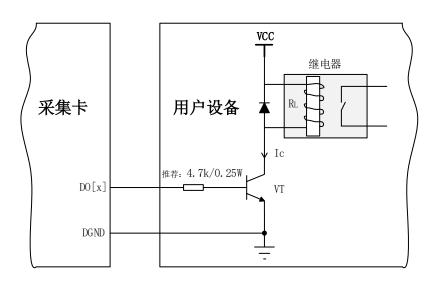


图 5-3-1 DO 数字量控制继电器电路

5.4 内时钟与外时钟

5.4.1 时钟输入输出的连接

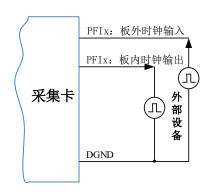


图 5-4-1 时钟输入输出的连接

当 DI 时钟与 DO 时钟同时输出时,默认为 DI 时钟输出。

5.4.2 内时钟功能及时钟输出

内时钟功能是根据用户指定的分频数将板载时钟振荡器经板载逻辑控制电路分频后产生的时钟信号去定时触发 DIO 进行转换。

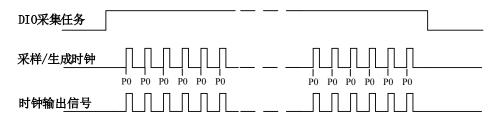


图 5-4-2 内时钟时序图

5.4.3 外时钟功能及时钟输出

外时钟功能是指使用板外时钟信号来定时触发 DIO 进行转换。

外时钟信号通过 PFI 任一管脚接入。板外时钟信号可以是另外一块板卡的时钟输出,也可以是 其他设备如时钟频率发生器等。外时钟的转换时序如图 5-4-3。

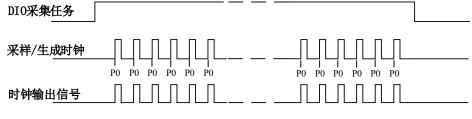


图 5-4-3 外时钟时序图

5.5 DI 采集模式

该采集卡的DI采集模式有按需单点采样、有限点采样、连续采样。

5.5.1 按需单点采样

按需单点采样可简单、方便的实现各通道单个点的采样,如图 4-5-1 所示。

按需单点采样功能是指用户根据需求,随时可以获取各个通道一个采样点的功能。该功能主要针对简单采样或采样实时性要求较高、数据量很少且采样时间不确定的应用中。采集实时性比较高,可方便的用于 PID, PLC 等实时的快速伺服闭环控制系统等场合。用户在每发出单点的读命令(DI_ReadDigitalLines)后,设备快速的完成一次采集,各通道采集一个点,之后通过 PCI/PCIe 总线将采集的 DI 数据迅速的传给 PC 机。

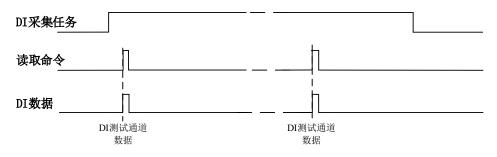


图5-5-1 按需单点采集

在按需单点采样模式下,DI 启动并被触发后,以 DI 最大采样频率作为转换时钟,采集各个端口的状态,每通道各采集一次,数据采集完成后将其传输到 PC 机完成一次单点采样。

- ① 在按需单点采样下,DI 转换频率受控于 DI 最大采样频率,而 DI 的采样速率则受制于用户的单点读命令。
- ② 在按需单点采样下, 时钟输出 CLKOUT 无效。

5.5.2 有限点采样

有限点采样功能是指 DI 在采样过程中,以设置的采样速率扫描 PO 端口,采集过程中不停顿,预设采样长度(nSampsPerChan)后自动停止采集的方式。

有限点采样用在已知采样总点数或采样总时间的采样任务中,尤其是用在带有触发的采样任务中。例如:需要在触发信号开始之后采集 2 秒钟长度的数据,使用有限点采样方式可以很方便的实现此需求。使用时,需要指定每通道的采样长度,或将需要采集的时间根据采样速率转换为每通道的采样长度,比如当每个通道需采集 N 个数据(nSampsPerChan = N),采样方式如图 5-5-2 所示。

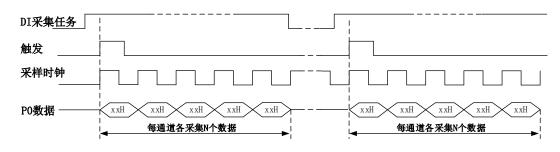


图 5-5-2 有限点采样

在有限点采样模式下, DI 启动后等待触发事件,被触发后,以预设的时钟源(图 5-5-2)作为

DI 采样时钟,以端口的形式连续采集,每通道各采集 N 个数据完成后,数据通过 PCI/PCIe 总线传输到 PC 机,至此完成一次有限点采集。若再次启动 DI 采集,等待触发事件,重复上述动作直至停止采集。

- ① 在内时钟有限点采样模式下, DI 转换频率为设置的内时钟频率。
- ② 在外时钟有限点采样模式下,DI 转换频率为外时钟频率,其频率不能大于 DI 的最大采样频率。

5.5.3 连续采样

连续采样功能是指 DI 在采样过程中每相邻两个采样点的时间相等,采集过程中不停顿,连续不间断的采集数据,直到用户主动停止采集任务。采样方式如图 5-5-3 所示。

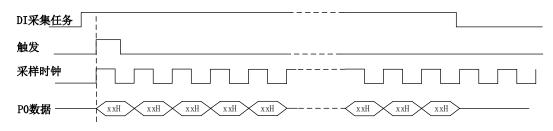


图 5-5-3 DI 连续采样

在连续采样模式下, DI 启动并开始触发后,以预设的内时钟或外时钟作为 DI 采样时钟(图 5-5-3),以端口的形式连续采集直到用户停止 DI 采集。

- ① 在内时钟连续采样模式下,DI 的采样速率由参数 fSampleRate 指定。
- ② 在外时钟连续采样模式下, DI 的采样速率为外时钟输入频率, 其频率不能大于 DI 的最大采样频率。

5.6 DO 生成模式

该采集卡的 DO 生成模式有按需单点生成、有限点生成、连续生成。

5.6.1 按需单点生成

按需单点生成可简单、方便的实现各通道单个点的生成,如图 5-6-1 所示。

按需单点生成功能是指用户根据需求,随时可以让各个通道输出一个点的功能。该功能主要针对简单输出信号或输出信号实时性要求较高、数据量很少且生成时间不确定的应用中。采集实时性比较高,可方便的用于 PID,PLC 等实时的快速伺服闭环控制系统等场合。用户在每发出单点的写命令后,PC 机将输出的 DO 数据通过 PCI/PCIe 总线迅速的传给设备,设备快速的完成一次 DO 输出。

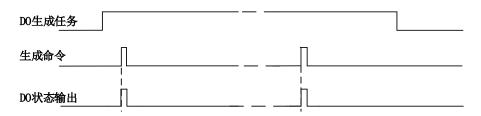


图5-6-1 按需单点生成

■ *®ART* Technology

在按需单点生成模式下,DO 启动并被触发后,以 DO 最大生成频率作为转换时钟,PC 机每发送一次数据,各通道同步转换出相对状态。

- ① 在按需单点生成下, DO 转换频率受控于 DO 最大生成频率, 而 DO 的生成速率则受制于用户的单点写命令。
- ② 在按需单点生成下, 时钟输出 CLKOUT 无效。

5.6.2 有限点生成

有限点生成功能是指 DO 在生成过程中,以设置的生成速率扫描各生成端口,生成过程中不停顿,每通道各生成预设点数后自动停止生成的方式。如图 5-6-2 所示。

有限点生成用在已知生成总点数或生成总时间的生成任务中,尤其是用在带有触发的生成任务中。例如:需要在触发信号开始之后输出 2 秒钟长度的数据,使用有限点生成方式可以很方便的实现此需求。使用时,需要指定每通道的生成长度,或将需要采集的时间根据生成速率转换为每通道的生成长度。

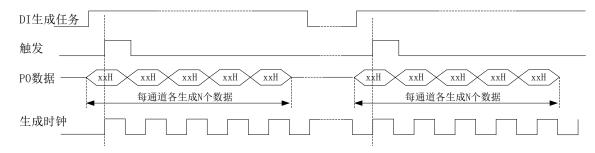


图5-6-2 有限点生成

在有限点生成模式下,DO 启动后等待触发事件,被触发后,PC 机将数据通过 PCI/PCIe 总线传输到设备,以预设的时钟(图 5-6-2)作为 DO 生成时钟,各端口同步输出,每通道各输出 N 个数据完成后,至此完成一次有限点采集。若再次启动 DO 生成任务,等待触发事件,重复上述动作直至停止采集。

- **᠒** ① 在内时钟有限点生成模式下,DO 转换频率为设置的内时钟频率。
 - ② 在外时钟有限点生成模式下, DO 转换频率为外时钟频率, 其频率不能大于 DO 的最大生成频率。

5.6.3 连续生成

连续生成功能是指 DO 在生成过程中每相邻两个生成点的时间相等,采集过程中不停顿,连续不间断的输出,直到用户主动停止生成任务。如图 5-6-3 所示。

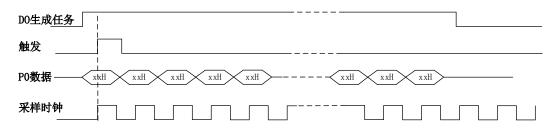


图5-6-3 内、外时钟连续生成

在连续生成模式下,DO 启动并开始触发后,以预设的内时钟或外时钟(图 5-6-3)作为 DO 生成时钟,各端口同步输出,生成完成后,继续同步输出,以此循环直到用户停止 DO 采集。

- ① 在内时钟连续生成模式下, DO 转换频率为设置的内时钟频率。
- ② 在外时钟连续生成模式下, DO 生成频率为外时钟输入频率, 其频率不能大于 DO 的最大生成频率。

5.7 触发功能

DIO 包含三种不同的触发模式: 开始触发、硬件延时触发、暂停触发。具体的触发模式请参考《触发》章节中《触发模式》的说明。

DIO 采样支持数字触发,所以触发信号来自使用数字触发器。具体的触发类型请参考《触发》章节中《触发类型》的说明。

■ 6 CTR 计数器

本章主要介绍 PCI / PCIe 931xN 计数器的相关性质,主要包括边沿计数、频率测量、半周期测量、脉宽测量、两边沿间隔测量、编码器及脉冲输出功能,为用户在使用 PCI / PCIe 931xN 过程中提供相关参考。

PCI/PCIe 931xN 的采集模式有单点采样、有限点采样、连续采样,其中单点采样为单点测量,有限点采样、连续采样为缓冲测量。

单点采样:指定任务采集或生成一个采样。

有限点采样: 指定任务采集或生成有限个采样, 具体个数由用户配置的采样长度决定。

连续采样: 指定任务在停止前始终采集或生成脉冲。

6.1 边沿计数

边沿计数是设备使用计数器得到上升沿和下降沿个数。

在边沿计数应用中,计数器使能后会对输入信号脉冲沿进行计数,用户可以配置计数的有效脉冲沿(上升沿或下降沿),同时也可以控制计数方式(加计数、减计数或外部控制)。计数器的数值可以通过软件读取或通过采样时钟获取。

6.1.1 计数方向控制

- 始终加计数;
- 始终减计数:
- 外部控制计数,当其输入端 AUX 为高时加计数,反之减计数。

6.1.2 边沿计数

单点边沿计数: 计数器使能后对输入信号脉冲沿进行计数。

缓冲边沿计数: 计数器使能后会对输入信号脉冲沿进行计数,但计数值需要在采样时钟的有效时钟沿时才被采样,因此需要指定采样时钟。

GATE 门控功能可通过暂停触发实现,硬件上将暂停触发路由到 GATE 上实现边沿计数是否暂停计数的功能,单点边沿计数可缓冲边沿计数均可使用暂停触发将 PFI 路由至 GATE 门控输入上。

可作为采样时钟的信号: PFI0~PFI7。

图 6-1-1 为边沿加计数上升沿有效示意图,其他方式不再陈述。

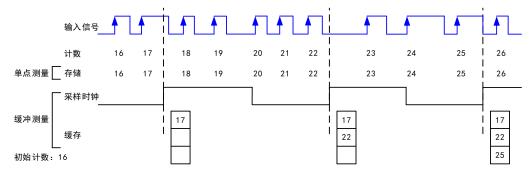


图 6-1-1 边沿加计数上升沿有效示意图

为保证所获得的计数值准确,用户需在计数器开始对输入信号计数之后,再通过采样时钟读取当前计数值。

6.1.3 计数重置

计数重置是指边沿计数在工作时,接收到计数重置信号的有效边沿后,计数器自动装载重置值 的功能。

计数重置功能可以单独开启或关闭,用户可以配置计数重置的有效边沿(上升沿或下降沿),可以对重置接线端的信号进行滤波,以消除抖动带来的影响。

6.2 频率测量

用户可以通过计数器实现对特定信号频率的测量。

连续测量的第一个采样通常是无效的,因计数器在使能后开始计数,该使能信号通常位于输入信号当前周期的中部位置,所以存入缓存的第一个计数值不能完全反映输入信号的周期,因此用户在读取数据时应将第一个数据丢弃。

频率测量方法根据实际应用的不同主要包括下述几个:

6.2.1 测量低频信号

该测量方法是通过一个已知频率的时基信号对输入信号进行测量,适用于中低频信号。

单点测量时,计数器对输入信号的单个周期进行计数,计数停止后,计数值存储至硬件寄存器。 缓冲测量时,计数器对连续多个周期进行计数并存入缓存,在缓冲区溢出时将丢失部分计数值。 图 6-2-1 为低频信号频率测量上升沿有效示意图,其他有效边沿不再陈述。

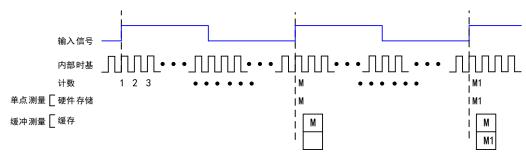


图 6-2-1 低频信号频率测量上升沿有效示意图

信号频率 = 内部时基频率 / 计数值 M 。

6.2.2 测量高频信号

该测量方法将根据用户设置的测量时间,产生固定宽度的脉冲,计数器将被测信号作为时钟对固定宽度的脉冲进行计数,根据计数结果计算出被测信号的频率。本卡测量时间最小单位 1ms,最大 40s,适用于高频信号。

单点测量时,计数器对被测信号测量,产生1个测量结果后计数停止,计数值存储至硬件寄存器。缓冲测量时,计数器对被测信号连续测量,将计数值存入缓存。

图 6-2-2 为高频信号频率测量上升沿有效示意图,其他有效边沿不再陈述。

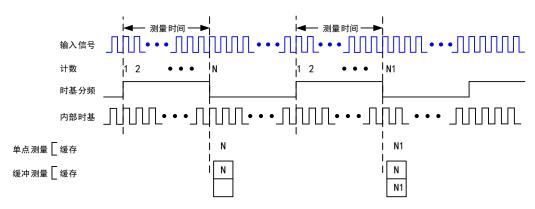


图 6-2-2 高频信号频率测量上升沿有效示意图

信号频率 = 计数值 N / 测量时间 , 测量时间 = 计数值 M / 内部时基频率 。

6.2.3 测量大范围信号

该测量方法根据用户设置的除数将输入信号的频率除以除数,生成一个计数器更易于测量的 Divided Down 信号,然后通过内部时基信号对该脉冲信号进行计数,根据计数结果计算出被测信号的频率。除数设置范围>=4。

单点测量时,计数器对被测信号测量,产生1个测量结果后计数停止,计数值存储至硬件寄存器。 缓冲测量时,计数器对被测信号连续测量,将计数值存入缓存。

图 6-2-3 为大范围信号频率测量上升沿有效示意图,下降沿有效不再陈述。

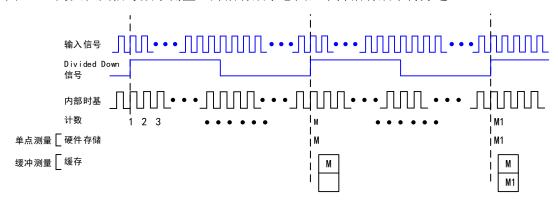


图 6-2-3 大范围信号频率测量上升沿有效示意图

信号频率 = 内部时基频率 / 计数值 M* 除数。

6.3 半周期测量

半周期测量是测量连续高低时间交替边沿之间的时间间隔。

单点测量时, 计数器对输入信号的半周期进行计数, 计数停止后, 计数值存储至硬件寄存器。 缓冲测量时, 计数器对连续多个周期进行计数并存入缓存。

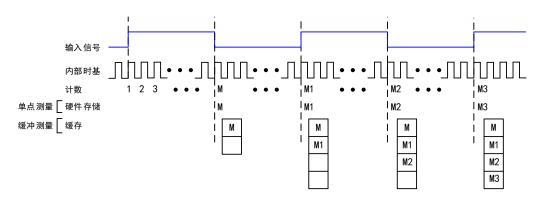


图 6-3-1 半周期示意图

半周期值 = 计数值 M / 内部时基频率。

连续测量的第一个采样通常是无效的,因计数器在使能后开始计数,该使能信号通常位于输入信号当前周期的中部位置,所以存入缓存的第一个计数值不能完全反映输入信号的周期, 因此用户在读取数据时应将第一个数据丢弃。

6.4 脉冲测量

在脉冲测量中,计数器测量启动任务后的 GATE 输入信号上脉冲的高/低时间。脉冲是根据它高/低的时间、高/低的滴答、频率/占空比来定义的,这与脉冲宽度的测量类似,不同之处在于它也测量了低脉冲时间(脉宽测量高有效时)。

将内部或外部周期性时钟信号(具有已知周期)连接到计数器的时钟输入端。计数器计算出在 GATE 信号的两个边沿之间的时钟输入端上出现的上升(或下降)的边沿数。

时钟信号的周期乘以计数器返回的边沿数,可计算出 GATE 输入的高和低的时间。

6.4.1 单脉冲测量

单脉冲(按需)测量相当于一个脉冲的高(H)和低(L)滴答上的两个单脉冲宽度测量,如图 6-4-1 所示。

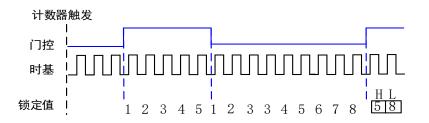


图 6-4-1 单 (按需) 脉冲测量

6.4.2 隐式缓冲脉冲测量

隐式缓冲脉冲测量中,在 GATE 信号的每个边沿上,计数器将计数值存储在 FIFO 中。 通过计算机总线将 FIFO 中存储的值再传输到主机内存中。

计数器被触发后开始计数。触发通常出现在 GATE 输入端的边沿之间,但直到所需的边沿到来时才开始计数。图 6-4-2 是隐式缓冲脉冲测量的示例。

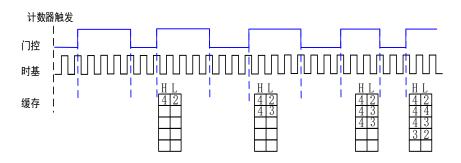


图 6-4-2 隐式缓冲脉冲测量

6.4.3 采样时钟缓冲脉冲测量

采样时钟缓冲脉冲测量类似于单脉冲测量,但缓冲脉冲测量是采用与采样时钟相关的多个脉冲 进行测量。

计数器在 GATE 上执行脉冲测量。在每个采样时钟的边沿,计数器在最后一个脉冲到来后将高和低的滴答值存储在 FIFO 中。通过计算机总线将 FIFO 中存储的值传输到主机内存中。

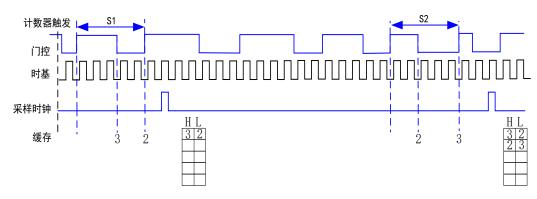


图 6-4-3 采样时钟缓冲脉冲测量

6.4.4 脉冲与半周期测量

采样在硬件中,脉冲测量和半周期测量是相同的。两者都测量脉冲的高低时间。两次测量之间的功能差异是数据的返回方式不同。在半周期测量中,每个高或低的时间被认为是一个数据点,并以秒或滴答为单位返回。在脉冲测量中,每对高和低的时间被认为是一个数据点,并以频率/占空比,高和低的时间,或高和低的滴答为单位作为配对值返回。在读取数据时,半周期测量中的 10 个点可得到 5 个高的时间和 5 个低的时间的数组。而在脉冲测量中读取 10 个点时,将获得 10 对高和低的时间的数组。

此外,脉冲测量支持采样时钟定时,而半周期测量则不支持。

6.5 脉宽测量

脉宽测量是对从上升沿到下降沿,或下降沿到上升沿的时间间隔进行测量。

单点测量时,计数器对输入信号的单个有效脉冲进行计数,计数停止后,计数值存储至硬件寄存器。

缓冲测量时,计数器对连续多个脉冲进行计数并存入FIFO缓存。

图 6-5-1 为脉宽测量上升沿有效示意图,下降沿有效不再陈述。

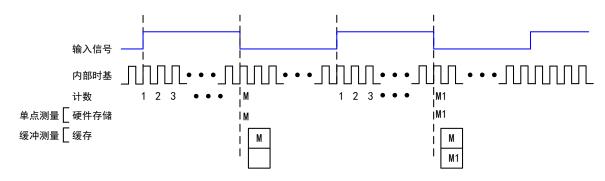


图 6-5-1 脉宽测量上升沿有效示意图

脉冲宽度值 = 计数值 M / 内部时基频率。

连续测量的第一个采样通常是无效的,因计数器在使能后开始计数,该使能信号通常位于输入信号当前周期的中部位置,所以存入缓存的第一个计数值不能完全反映输入信号的周期,因此用户在读取数据时应将第一个数据丢弃。

6.6 两边沿间隔测量

两边沿间隔测量是测量一个数字信号的上升沿或下降沿与另一个数字信号的上升沿或下降沿之间的时间。

单点测量时,计数器使能后,在第一个信号的有效边沿开始计数,第二个信号的有效边沿停止计数,并将计数值存储至硬件寄存器。

缓冲测量时,计数器对连续多个有效边沿间隔进行计数并存入缓存。

图 6-6-1 为两输入信号均上升沿有效示意图,其他有效边沿不再陈述。

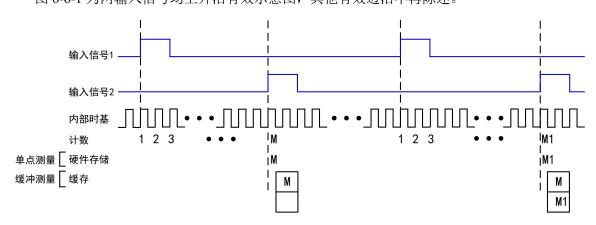


图 6-6-1 两边沿均上升沿有效示意图

两边沿间隔 = 计数值 M / 内部时基频率 。

6.7 编码器

编码器可将线性或旋转位移转换为数字或脉冲信号。用户通过计数器可以实现基于正交编码器或双脉冲、单脉冲编码器的位置测量。通过 X1、X2 和 X4 角度编码器,实现对角位置的测量;通过双脉冲、单脉冲编码器可实现对线性位置及角度位置的测量。

编码器的单点测量与缓冲测量同计数器其他方式相同,在此不再陈述。

6.7.1 利用正交编码器测量

➤ X1 编码

在 X1 编码模式下,当信号 B 在信号 A 之后时,增量发生在信号 A 的上升沿,当信号 B 在信号 A 之前时,减量发生在信号 A 的上升沿。如图 6-7-1 所示。

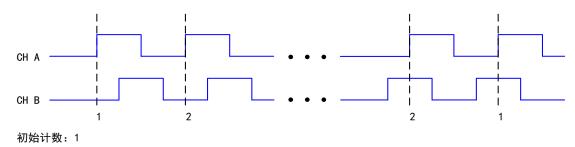


图 6-7-1 X1 编码

➤ X2 编码

在 X2 编码模式下,当信号 B 在信号 A 之后时,增量发生在信号 A 的上升沿和下降沿;当信号 B 在信号 A 之前时,减量发生在信号 A 的上升沿和下降沿。如图 6-7-2 所示。

图 6-7-2 X2 编码

➤ X4 编码

在 X4 编码模式下,当信号 B 在信号 A 之后时,增量发生在信号 A 和信号 B 的上升沿和下降 沿;当信号 B 在信号 A 之前时,减量发生在信号 A 和信号 B 的上升沿和下降沿。如图 6-7-3 所示。

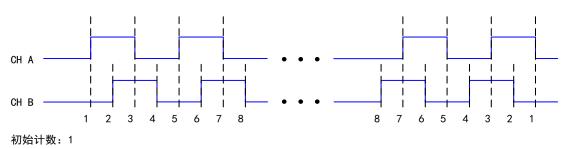


图 6-7-3 X4 编码

6.7.2 利用双脉冲编码器测量

在双脉冲编码模式下,增量发生在信号 A 的上升沿,减量发生在信号 B 的上升沿。如图 6-6-4 所示。

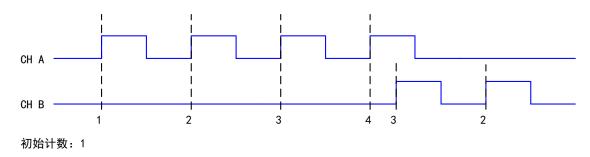


图 6-7-4 双脉冲编码

6.7.3 利用单脉冲编码器测量

在单脉冲编码模式下,当信号 B 为低电平时,增量发生在信号 A 的上升沿;当信号 B 为高电平时,减量发生在信号 A 的上升沿。如图 6-6-5 所示。

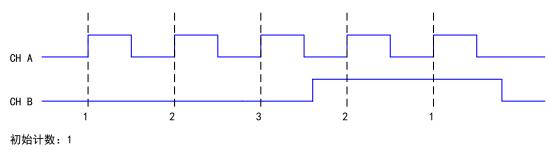


图 6-7-5 单脉冲编码

6.7.4 Z 索引

当通道 Z 为高电平,且信号 A 和信号 B 符合索引相位时,计数器将被重置为设定的索引值。如图 6-7-6 所示,启用 Z 索引功能,并且将 Z 值设置为 B 15,触发相位设置为 B 低 B 低。当通道 B 为高电平并且通道 B 有为低电平时,计数值将重新加载,然后按照之前的方式继续计数。下图以 B %2 编码器来举例。

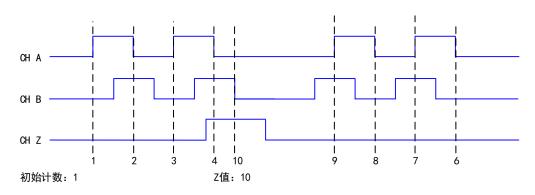
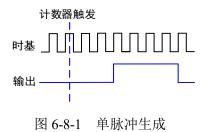


图 6-7-6 Z 索引


6.8 脉冲输出

6.8.1 单脉冲生成

计数器可输出一个单脉冲。从计数器触发到脉冲开始的延时时间可以被设置。延迟时间是根据时基输入的多个有效边沿来测量的。

■ *®ART* Technology

可以设置要输出的脉冲宽度,脉冲宽度也是根据时基输入的多个有效边沿来测量的。也可以设置脉冲的初始状态、初始延时。图 6-8-1 所示,单脉冲生成,此脉冲的初始状态为低电平,初始延时为 3,脉冲宽度为 4(使用时基的上升沿)。

6.8.2 具有启动触发的单脉冲生成

计数器可以响应硬件启动触发信号上的一个脉冲而输出单个脉冲。

将开始触发信号连接到计数器的门控输入端。可以设置从"开始触发"到"脉冲开始"的延时时间,还可以设置脉冲宽度。延时时间和脉冲宽度可以根据时基输入的多个有效边沿来测量。

触发脉冲信号启动一次后,计数器将忽略门控输入。图 6-8-2 为具有启动触发功能的单脉冲的产生,此脉冲延时为 3,脉冲宽度为 4 (使用时基的上升沿)。

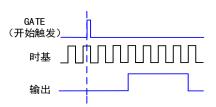


图 6-8-2 具有启动触发的单脉冲生成

6.8.3 有限脉冲序列生成

有限脉冲序列生成产生一系列设定频率和占空比的脉冲,用于预设脉冲数量。从计数器脉冲启动任务开始的初始延时时间的计数,之后进入脉冲正常输出的高、低嘀嗒计数。计数器根据实际输出值输出对应的高、低脉冲,并在输出设定的脉冲个数后自动停止任务。图 6-8-3 所示,有限脉冲序列生成:初始状态为低电平,2个嘀嗒初始延时,3个高嘀嗒,3个低嘀嗒,4个脉冲。

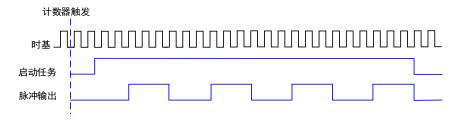


图 6-8-3 有限脉冲序列生成

6.8.4 可重触发的脉冲或脉冲序列生成

脉计数器可以输出单个脉冲或多个脉冲来响应硬件开始触发信号上的每个脉冲。产生的脉冲出现在计数器的计数器 n 内部输出信号上。

将开始触发信号连接到计数器的 GATE 输入端。设置从"开始触发"到每个脉冲开始的延时时间,也可以设置脉冲宽度。延时时间和脉冲宽度可以根据时基输入的多个有效边沿来测量。在应用

CO 时,初始延时可用于第一个触发脉冲输出,也可以用于每次触发的脉冲输出。用户可通过启用触发器上的初始延迟属性来配置。单脉冲的默认值为 True,而有限脉冲序列的默认值为 False。

当脉冲生成正在进行时,计数器的 GATE 输入将被忽略。在脉冲生成完成后,计数器等待另一个开始触发信号以便开始另一个脉冲的产生。对于重触发的脉冲生成,不允许暂停触发,因为暂停触发也使用 GATE 输入信号。如图 6-8-4 为应用 CO 产生的脉冲延时为 5 且脉冲宽度为 3 (使用源的上升沿)的两个脉冲,.使能重触发的初始延时设置的默认值为 True。图 6-8-5 为用 CO 产生的相同的脉冲序列。使能重触发的初始延时设置的默认值为 False。

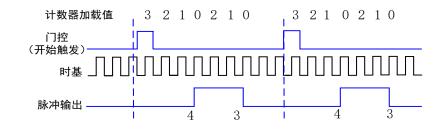


图 6-8-4 重触发器上具有初始延时的重触发单脉冲的产生

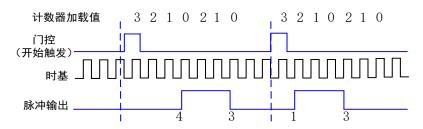


图 6-8-5 重触发器上具有初始延时的重触发单脉冲产生设置值为 False

触发和第一个触发边沿之间的最小时间是时基的两个嘀嗒

6.8.5 连续脉冲序列生成

连续脉冲序列生成产生具有可编程频率和占空比的一系列脉冲。

可设置从计数器触发到脉冲序列开始的延时时间,即初始延时。延时时间是根据时基输入的多个有效边沿来测量的。可设置输出信号的高和低的脉冲宽度。脉冲宽度也是根据时基输入的多个有效边沿来测量的。也可以设置外时钟输入时的有效边沿(上升沿或下降沿)。

计数器被触发或者响应硬件启动触发后,计数器开始生成脉冲序列。硬件内部将"开始触发"信号路由到计数器的 GATE 输入端。也可以使用计数器的 GATE 输入作为暂停触发(GATE 不被用作开始触发时)。当暂停触发被触发时,计数器暂停脉冲的输出。图 6-8-6 为连续脉冲序列的生成(使用源的上升沿)。

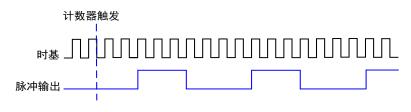


图 6-8-6 连续脉冲序列生成

连续脉冲序列的生成有时被称为分频。 如果输出信号的高和低脉冲宽度是 M+N 个周期,则计数器 n 内部输出信号的频率等于时基频率除以(M+N)。

6.9 数字滤波

数字滤波选项可消除输入数据的毛刺。比如,频率测量时,GATE 上信号的抖动会导致频率测量不准确,使用滤波功能可减小或消除抖动对测量的影响,提高测量的准确性。用户可通过配置"滤波宽度设置"来控制滤波的时间间隔。滤波可阻止宽度小于指定滤波间隔相等的脉冲,通过宽度大于指定间隔的脉冲,如图 6-9-1。

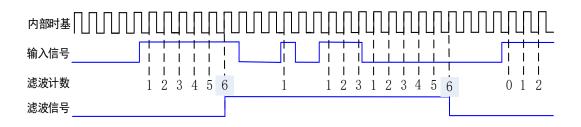


图 6-9-1 数字滤波

6.10 输出事件

计数器在边沿计数和基于编码器进行位置测量时,可以配置计数器在计数溢出时(加计数时上溢或减计数时下溢),输出一个事件。

输出的事件有两种方式: 脉冲方式或者反转方式。

6.10.1 脉冲方式

脉冲方式为计数器溢出时,根据用户设定的输出极性,输出一个计数周期的脉冲,脉冲宽度与计数器的输入信号有关。计数器继续计数,再次溢出时,再次输出一个计数周期的脉冲。

以加计数为例,设定输出极性为高电平,当计数器从初始值加计数,加到 4294967295 (即 2³²-1)时,计数器输出一个高脉冲,当计数器继续加计数到 0 时,此输出脉冲无效。

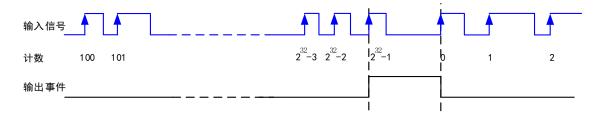


图 6-10-1 脉冲方式输出

减计数工作方式同加计数类似,只是计数器减到0时,计数器输出一个有效脉冲。

6.10.2 反转方式

反转方式为根据用户设定的空闲状态,计数器溢出时,输出发生一次反转。计数器继续计数, 再次溢出时,输出再次发生反转。

以加计数为例,设定空闲状态为低电平,当计数值从初始值加到 4294967295 (即 2³²-1)的过程中,计数器输出一直为空闲状态的低电平,当计数器继续加计数为 0 时,输出反转为高电平。

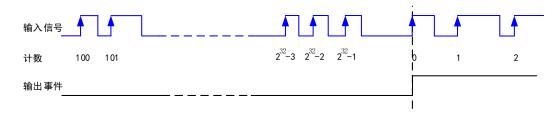


图 6-10-2 反转方式输出

减计数工作方式同加计数类似,只是计数器减到 4294967295 (即 2^{32} -1) 时,计数器输出发生反转。

■ 7 保修

7.1 保修

产品自出厂之日起,两年内用户凡遵守运输、贮存和使用规则,而质量低于产品标准者公司免费修理。

7.2 技术支持与服务

如果您认为您的产品出现故障,请遵循以下步骤:

- 1)、描述问题现象。
- 2)、收集所遇问题的信息。

如:硬件版本号、软件安装包版本号、用户手册版本号、物理连接、软件界面设置、操作系统、电脑屏幕上不正常信息、其他信息等。

硬件版本号: 板卡上的版本号,如 D3056300-02。

软件安装包版本号:安装软件时出现的版本号或在"开始"菜单 \rightarrow 所有程序 \rightarrow 阿尔泰 测控演示系统 \rightarrow PCI / PCIe 931xN 中查询。

用户手册版本号: 在用户手册中关于本手册中查找,如 V6.00.00

- 3)、打电话给您的供货商,描述故障问题。
- 4)、如果您的产品被诊断为发生故障,我们会尽快为您解决。

7.3 返修注意事项

在公司售出的产品包装中,用户将会找到该产品和这本说明书,同时还有产品质保卡。产品质保卡请用户务必妥善保存,当该产品出现问题需要维修时,请用户将产品质保卡、用户问题描述单同产品一起寄回本公司,以便我们尽快的为您解决问题。

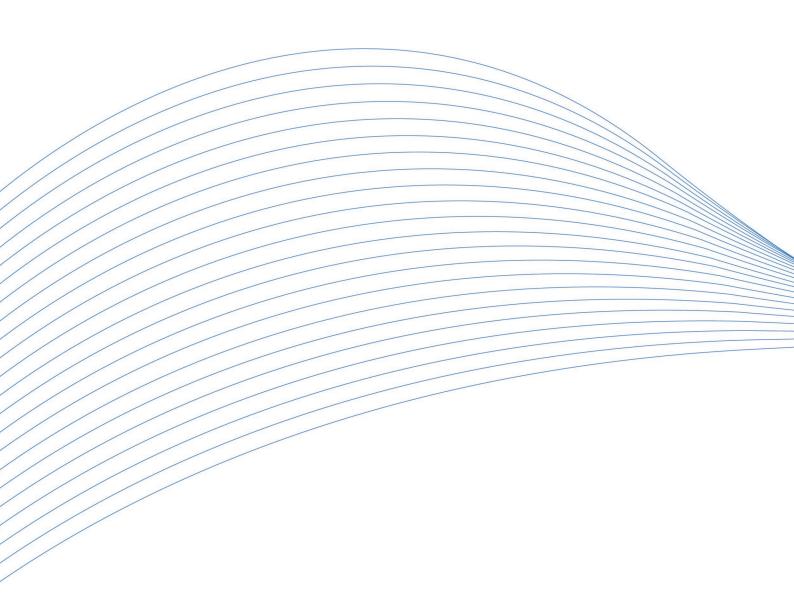
■ 附录 A: 各种标识、概念的命名约定

CN1、CN2......CNn 表示设备外部引线连接器(Connector),如 37 芯 D 型头等, n 为连接器序号(Number).

JP1、JP2.....JPn 表示跨接套或跳线器(Jumper), n 为跳线器序号(Number).

AO0、AO1......AOn 表示模拟量输出通道引脚(Analog Output), n 为模拟量输出通道编号 (Number).

DIO、DI1.....DIn 表示数字量 I/O 输入引脚(Digital Input), n 为数字量输入通道编号(Number).


DO0、DO1......DOn 表示数字量 I/O 输出引脚(Digital Output), n 为数字量输出通道编号 (Number).

ATR 模拟量触发源信号(Analog Trigger).

DTR 数字量触发源信号(Digital Trigger).

DAPara 指的是 DA 初始化函数中的 DAPara 参数,它的实际类型为结构体 PCI / PCIe 931xN PARA DA.

PFI 功能可编程数字信号接口.

阿尔泰科技

服务热线:400-860-3335

网址: www.art-control.com