DAM-2600M DAM模块

产品使用手册

V6.01.01

前言

版权归北京阿尔泰科技发展有限公司所有,未经许可,不得以机械、电子或其它任何方式进行复制。本公司保留对此手册更改的权利,产品后续相关变更时,恕不另行通知。

■ 免责说明

订购产品前,请向厂家或经销商详细了解产品性能是否符合您的需求。

正确的运输、储存、组装、装配、安装、调试、操作和维护是产品安全、正常运行的前提。本公司对于任何因安装、使用不当而导致的直接、间接、有意或无意的损坏及隐患概不负责。

■ 安全使用小常识

- 1.在使用产品前,请务必仔细阅读产品使用手册;
- 2.对未准备安装使用的产品,应做好防静电保护工作(最好放置在防静电保护袋中,不要将其取出);
- 3.在拿出产品前,应将手先置于接地金属物体上,以释放身体及手中的静电,并佩戴静电手套和手环,要养成只触及其边缘部分的习惯;
- 4.为避免人体被电击或产品被损坏,在每次对产品进行拔插或重新配置时,须断电;
- 5.在需对产品进行搬动前, 务必先拔掉电源;
- 6.对整机产品, 需增加/减少板卡时, 务必断电;
- 7. 当您需连接或拔除任何设备前,须确定所有的电源线事先已被拔掉;
- 8.为避免频繁开关机对产品造成不必要的损伤,关机后,应至少等待30秒后再开机。

目 录

1 产品说明	3
1.1 概述 1.2 产品外形图 1.4 主要指标 1.5 模块使用说明	3 4
2 配置说明	8
2.1 代码配置表	9 12 14
3 软件使用说明 3.1 上电及初始化	17 17 17
4 产品注意事项及保修 4.1 注意事项 4.2 保修	21

■ 1 产品说明

1.1 概述

DAM-2600M 为单端 4 路 12 位 AI 输入、4 路 12 位 AO 输出模块,具有 RS485 通讯接口,ModbusRTU 协议,可实现数据换算功能,配备良好的人机交互界面,使用方便,性能稳定。

1.2 产品外形图

图 1

1.3 产品尺寸图

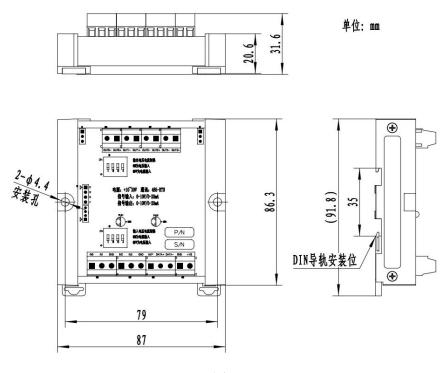


图 2

1.4 主要指标

表1

模拟量输入			
通道数	4路		
输入类型	电压(V)、电流(mA)		
输入范围	单极性: 0~10V、0~20mA		
	默认量程: 0~10V		
分辨率	12 位		
采样速率	单通道 400SPS		
采集精度	1‰		
输入阻抗	电压量程: 14KΩ 电流量程: 158Ω		
模拟量输出			
通道数	4 路		
输出类型	电压 (V) 、电流 (I)		
输出范围	单极性: 0~10V、0~20mA		
	默认量程: 0~20mA		
分辨率	12 位		
精度	2‰		
通用			
看门狗	支持通信看门狗和软件看门狗		
通讯接口	RS485		
波特率	1200~115200bps		
数据通讯速率注1	最大 190 次/秒(单模块,115200bps 下)		
	最大 34 次/秒 (单模块, 9600bps 下)		
	最大 5 次/秒 (单模块, 1200bps 下)		
功耗	额定值 0.7W @ 24VDC		
操作温度	-10°C∼+70°C		
存储温度	-40°C~+80°C		

注意:

1、数据通讯速率: 此参数指的是 MCU 控制器和上位机通讯速度。

1.5 模块使用说明

1、端子定义表

表 2

端子	名称	说明
1	IN0	模拟量输入通0道+
2	IN1	模拟量输入通1道+
3	GND	模拟量输入公共地
4	IN2	模拟量输入通 2 道+
5	IN3	模拟量输入通 3 道+
6	GND	模拟量输入公共地
7	INIT*	板卡复位
8	DATA+	RS-485 接口信号正
9	DATA-	RS-485 接口信号负
10	+VSS	直流正电源输入, +15~+30VDC
11	GND	直流电源输入地
12	OUT3+	模拟量输出 3 通道+
13	OUT3-	模拟量输出 3 通道-
14	OUT2+	模拟量输出 2 通道+
15	OUT2-	模拟量输出 2 通道-
16	OUT1+	模拟量输出1通道+
17	OUT1-	模拟量输出 1 通道-
18	OUT0+	模拟量输出 0 通道+
19	OUT0-	模拟量输出 0 通道-

2、模块内部结构框图

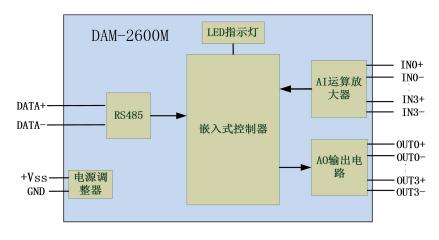


图 3

■ ❷ 阿尔泰科技 ■

3、指示灯说明

模块有1个运行指示灯和1个电源指示灯

电源指示灯:上电后电源指示灯常亮

运行指示灯:正常上电并且无数据发送时,指示灯常亮;有数据发送时,指示灯闪烁,复位状态 LED 闪烁 3 次后常亮。

4、模块复位

按住复位按钮后上电,模块指示灯快速闪烁 3 次,待指示灯闪烁停止后,此时模块已经完成复位,模块初始化默认值为:

模块地址:1

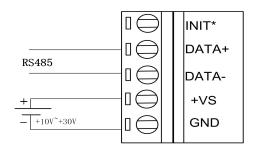
串口波特率: 9600bps 8、1、N(无校验)

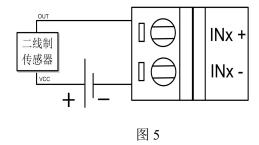
默认量程: AI: 0~10V

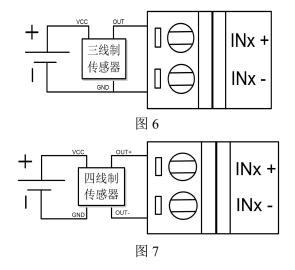
AO: 0~10V

5、电源连接及通讯连接:

电源输入及 RS485 通讯接口如下图所示,输入电源的最大电压为 30V,超过量程范围可能会造成模块电路的永久性损坏。




图 4


6、量程切换说明

板卡通过拨码开关实现对 AI 和 AO 的电压电流切换, 0-3 通道对应拨码的上数值 1-4。拨码方式根据板卡上的文字描述进行切换即可。

7、模拟量输入连接

模块共有 4 路单端模拟量输入($0\sim3$ 通道),输入类型有电压、电流 2 种,接线方式有两线制、三线制和四线制接法,如图 $5\sim7$;本模块出厂默认设置为 $0\sim10$ V。单个通道的最大输入电压为 11V,超过此电压可能会造成模块电路的永久性损坏。

■ 2 配置说明

2.1 代码配置表

1、波特率配置代码表

表 3

代码	0x00	0x01	0x02	0x03	0x04	0x05	0x06	0x07
波特率	1200	2400	4800	9600	19200	38400	57600	115200

2、模拟量输入范围配置代码表

表 4

代码 (16 进制)	数据类型	数值范围 (十进制)
0x0000	Unsigned int	0~65535
0x0001	Short int	-32768~+32767
0x0002	Unsigned long	0~2^64
0x0003	long	-2^31~2^31-1
0x0004	float	IEEE-754 浮点数

表 5

模式	信号类型	范围	代码
A T	V	0-10V	0X0E
AI	I	0-20mA	0X0B
4.0	V	0-10V	0X0E
AO	I	0-20mA	0X0B

表 6

代码(16 进制)	输出电压速率(V)	输出电流速率(mA)
00	Immedidate(立即)	Immedidate(立即)
01	0.0625V/S	0.125mA/S

02	0.125V/S	0.25mA/S
03	0.25V/S	0.5mA/S
04	0.5V/S	1mA/S
05	1V/S	2mA/S
06	2V/S	4mA/S
07	4V/S	8mA/S
08	8V/S	16mA/S
09	16V/S	32mA/S
0A	32V/S	64mA/S
0B	64V/S	128mA/S
0C	128V/S	256mA/S
0D	256V/S	512mA/S
0E	512V/S	1024mA/S
0F	1024V/S	2048mA/S

2.2 MODBUS 地址分配表

读取数据寄存器及设置模块参数等命令如表 7: 下表支持功能码 0x3,0x4,0x6,0x10

表 5

地址(十进制)	描述	属性	说明
40001	工程模式:第0路模拟量采集值 换算模式:第0路数据类型高位	只读	工程模式:读取的为电压或电流 类型的工程值,数据类型为 uint,
40002	工程模式:第1路模拟量采集值 换算模式:第0路数据类型低位	只读	4 个通道占用共 4 个寄存器, 地址 范围: 40001-40004。
40003	工程模式:第2路模拟量采集值 换算模式:第1路数据类型高位	只读	换算模式:读取的为采集到的电
40004	工程模式:第3路模拟量采集值 换算模式:第1路数据类型低位	只读	压电流值换算出的实际值,数据 类型为 int、uint 时,4 个通道占用 共4 个寄存器,地址范围:
40005	换算模式: 第2路数据类型高位	只读	40001-40004。数据类型为 Long、
40006	换算模式:第2路数据类型低位	只读	ulong、float 时,数据类型占用 2 个
40007	换算模式: 第3路数据类型高位	只读	寄存器,地址范围为40001~40008,
40008	换算模式:第3路数据类型低位	只读	数据类型为 float 时符合 IEEE-754 浮点数格式
保留			

■ 6 阿尔泰科技 ■

40066	INO 模拟量输入量程	读写	Bit15_Bit 8 必须为 0。
40067	IN1 模拟量输入量程	读写	Bit7_Bit 0 设置通道量程详见表 5
40068	IN2 模拟量输入量程	读写	如: 0X000E 为 0-10V 量程
40069	IN3 模拟量输入量程	读写	
保留			
40099	通道使能	读写	Bit15_Bit 8 必须为 0。 Bit3_Bit 0 代表 0-4 通道 0:通道关闭 1: 通道打开 例: 0x000F 使能 0-3 通道
保留			
41025	OUTO 模拟量输出值	读写	各量程和码值的对应关系如下:
41026	OUT1 模拟量输出值	读写	0~+10V 对应 0~0x0FFF
41027	OUT2 模拟量输出值	读写	0~+20mA 对应 0~0x0FFF
41027	OUT3 模拟量输出值	读写	详见表 7
保留			
41058	OUTO 模拟量输出量程	读写	Bit15_Bit 8 必须为 0。
41059	OUT1 模拟量输出量程	读写	Bit7_Bit 0 该通道输出量程详见表
41060	OUT2 模拟量输出量程	读写	5
41061	OUT3 模拟量输出量程	读写	如: 0X000E 0-10V
保留			
41091	OUTO 模拟量输出上电值	读写	各量程和码值的对应关系如下:
41092	OUT1 模拟量输出上电值	读写	0~+10V 对应 0~0x0FFF
41093	OUT2 模拟量输出上电值	读写	0~+20mA 对应 0~0x0FFF
41094	OUT3 模拟量输出上电值	读写	详见表 7
保留			
41124	OUTO 模拟量输出安全值	读写	各量程和码值的对应关系如下:
41125	OUT1 模拟量输出安全值	读写	0~+10V 对应 0~0x0FFF
41126	OUT2 模拟量输出安全值	读写	0~+20mA 对应 0~0x0FFF
41127	OUT3 模拟量输出安全值	读写	
保留			
41158	OUTO 模拟量输出速率	读写	Bit15_Bit 8 必须为 0。
41159	OUT1 模拟量输出速率	读写	Bit7_Bit 0 输出速率的码值详见表
41160	OUT2 模拟量输出速率	读写	6
41161	OUT3 模拟量输出速率	读写	如: 0x0002:0.125V/S 、 0.25mA/S
保留			
47169	校准模式	只写	写入 0x0001 板卡进入校准模式
保留			
47171	模块重启	只写	写入 0x0001 模块重启
保留			
7173	模块恢复出厂	只写	写入 0x0001 模块恢复出厂参数

保留			
47175-47178	0 通道换算单位寄存器	读写	存储上位机设置的自定义单位,
47179-47182	1 通道换算单位寄存器	读写	每个通道占用4个寄存器,每个
47183-47186	2 通道换算单位寄存器	读写] 通道可以存储 8 个字符长度的数
47187-47190	3 通道换算单位寄存器	读写	⁻ 据。
保留			
48193-48202	产品名称	只读	设备模块相关信息,读取的格式
48203-48207	产品版本号	只读	为ASCII
48208-48212	产品协议类型	只读]
48213	模块地址	读写	Bit15_Bit 8 必须输入为 0。 Bit7_Bit 0 模块地址,范围 1~255。 如: 0x01 地址为 1
48214	模块波特率	读写	Bit15_Bit 8 必须为 0。 Bit7_Bit 0 该模块波特率详见表 3 如: 0x0003 9600bit/s
48215	奇偶校验位	读写	Bit15_Bit 8 必须为 0。 Bit7_Bit 0 该模块校验位 如: 0x0000: 无校验; 0x0001: 偶校验; 0x0002: 奇校验;
保留			
48218	通讯超时模式	读写	写 0x0000 板卡超时后复位 写 0x0001 板卡超时进入安全模式
48219	安全通讯时间寄存器	读写	模块超过此时间没有跟主机通信 上就进入安全模式,单位 0.1ms 5~65535,默认为 0,设定为 0 时 认为没有启用该功能
保留			
48220	换算使能寄存器	读写	Bit15_Bit8 必须为 0。 Bit7_Bit0 换算时能 0x0000: 换算关闭, 0x0001: 上下限换算使能 例: 0x0001 上下限换算使能
48221	数据类型寄存器	读写	Bit15_Bit8 必须为 0。 Bit7_Bit0 数据类型详见表 4 例: 0x0001 int 类型传输
48222	字节序寄存器	读写	假设 MODBUS 指令中变量为 ABCD 0:big-endian:ABCD 1:little-endian:DCBA 2:big-endian_byte_swap:BADC

■ 6 阿尔泰科技

			3:lit-endian_byte_swap:CDAB
48223-48224	换算倍率系数 Float 类型	读写	大小符合 IEEE-754 浮点数格式
保留			
48355-48356	0 通道浮点型 数值下限	读写	
48357-48358	0 通道浮点型 数值上限	读写	
48359-48360	0通道浮点型工程下限	读写	
48361-48362	0 通道浮点型工程上限	读写	
48363-48364	1 通道浮点型 数值下限	读写	
48365-48366	1 通道浮点型 数值上限	读写	
48367-48368	1通道浮点型工程下限	读写	
48369-48370	1通道浮点型工程上限	读写	
48371-48372	2 通道浮点型 数值下限	读写	│ │ 大小符合 IEEE-754 浮点数格式
48373-48374	2 通道浮点型 数值上限	读写	
48375-48376	2通道浮点型工程下限	读写	
48377-48378	2通道浮点型工程上限	读写	
48379-48380	3 通道浮点型 数值下限	读写	
48381-48382	3 通道浮点型 数值上限	读写	
48383-48384	3 通道浮点型工程下限	读写	
48385-48386	3通道浮点型工程上限	读写	
保留			

表 7 (工程模式对应此表)

模拟量输入量程	数据寄存器的数码值(十进制)
0V∼10V	0-4095 (0V 对应数码值 0, 10V 对应数码值 4095)
0~20mA	0-4095 (0mA 对应数码值 0, 20mA 对应数码值 4095)

2.3 MODBUS 通讯实例

1、04 功能码

工程模式:模块地址为01,读取通道0~3的采样值

设备地址 功能码 寄存器地址 寄存器数量

设备返回: <u>01</u> <u>04</u> <u>08</u> <u>0F FF 0F FF 0F FF 0F FF</u> <u>CRC 校验</u>

设备地址 功能码 字节数量 数据

通道 0 采样值: 0F FF

通道1采样值: 0F FF

通道2采样值: 0FFF

通道3采样值: 0FFF

换算模式:模块地址为01,读取通道0~3的long型采样值,大端方式

设备地址 功能码 寄存器地址 寄存器数量

设备返回: 01 04 10 FF FF FC 18 FF FF FC 18 FF FF FC 18 FF FF FC 18

设备地址 功能码 字节数量 数据

CRC 校验

通道 0 采样值: FF FF FC 18

通道 1 采样值: FF FF FC 18

通道 2 采样值: FF FF FC 18

通道 3 采样值: FF FF FC 18

2、03 功能码

举例:

模块地址为01,搜索模块

主机发送: 01 03 2014 00 03 CRC 校验

设备地址 功能码 寄存器地址 寄存器数量

设备返回: <u>01</u> <u>03</u> <u>06</u> <u>00 01 00 03 00 00</u> CRC 校验

设备地址 功能码 字节数量 数据

模块地址:1

模块波特率: 9600bps 校验方式: 无校验

3、06 功能码

举例:

模块地址为01,设置模块地址为02

主机发送: <u>01</u> <u>06</u> <u>2014</u> <u>00 02</u> CRC 校验

设备地址 功能码 寄存器地址 数据

模块地址: 2

设备返回: 01 06 2014 00 02 CRC 校验

设备地址 功能码 寄存器地址 数据

4、16 功能码

举例:

模块地址为01,设置模块地址为2和波特率为9600,无校验

主机发送: <u>01</u> <u>10</u> <u>2014</u> <u>00 03</u> <u>06</u> <u>00 02 00 03 00 00</u> CRC 校验

设备地址 功能码 寄存器地址 寄存器数量 字节数量 数据

模块地址: 2

波特率: 9600

校验位:无

设备返回: <u>01</u> <u>10</u> <u>2014</u> <u>00 03</u> CRC 校验

设备地址 功能码 寄存器地址 寄存器数量

2.4 换算模式

在实际应用中,需要将采集到的信号进行数值的转换,方便用户进行数据读取,此板卡将计算功能融入到微处理器中,输出值即为转换后的数值,也可根据通讯要求设置传输数据的格式,方便了与其他设备进行通讯,其配置方法如下:

1、配置换算模式

例如某压力变送器为 4~20mA 信号,量程为 0~100Kpa,配置换算步骤如下:

(1) 首先配置接入变送器该通道的量程(选择量程应大于等于变送器的信号量程)此例程选择 0 通道 0~20mA,点击"换算功能设置"如图 8

图 8

(2) 根据通讯需求选择"数据类型",(若需要无符号整形数据可选择 uint、ulong,需要有符号数据选择 int、long,需要浮点数数据选择 float),"字节顺序",是调整传输数据的大小端类型(根据接收数据端解析要求进行设置,没有要求默认大端模式),"倍率系数"可调整传输数据的输出倍率,方便用户数据灵活转换(例:整型数据传输,但需要 2 位小数,可将倍率系数设为 100,数据传输出后再将数据除 100 进行处理,float 类型同理)。

图 9

图 10 "数值上限值"和"数值下限值"填写变送器的最大最小值,即"数值上限值"为 20, "数值下限值"为 4; "工程上限值"和"工程下限值"填写的是变送器的量程最大最小值,即"工程上限值"为 100, "工程下限值"为 0, 点击设置后配置完成;每个通道可设置 8 个字符型或 4 个汉字用以显示换算的单位,换算单位断电不丢失,点击设置后完成配置。

图 10

效果图 11 如下

图 11

2、计算公式

实际工程值 = $\frac{-3 \hbar \xi N \pm \delta \ell - \xi N \pm \delta \ell - \ell N \pm \delta \ell}{\xi N \pm \delta \ell + \ell N \pm \delta \ell} \times (T + \ell \ell + \ell \ell + \ell \ell) + T + T + \ell \ell + \ell \ell$

例如: 当输入信号为 5.16mA 时, 转换后的数值为

$$(实际换算数值)$$
 7.25 = $\frac{$ 当前模拟量数值(5.16) - 4 }{ 20 - 4 } \times (100.0 - 0) + 0

3、大小端说明:

大端字节顺序是指高位字节存储在低位地址,低位字节存储在高位地址;小端字节顺序则反之,高位字节存储在高位地址,低位字节存储在低位地址,用户可根据字序需要设置相应的模式。

注:

- 1:数值换算只支持线性换算,非线性产品换算会计算结果错误。
- 2: 板卡可设置的数据类型共 5 种 (详见表 4), 其中 short int 类型和 unsigned int 类型占用一个寄存器, long 类型、ulong 类型和 float 类型占用两个寄存器, 在读取数据时可根据数据类型选择读取的寄存器个数。
- 3: int 类型和 uint 类型不能进行大小端设置

2.5 安装方式

DAM-2600M 模块可方便的安装在 DIN 导轨、面板上,方便用户使用

■ 3 软件使用说明

3.1 上电及初始化

- 1) 连接电源: "+Vs"接电源正, "GND"接+地, 模块供电要求: +15V—+30V。
- 2) 连接通讯线: DAM-2600M 通过转换模块 USB 转 RS485 连接到计算机。
- 3) 复位: 在断电的情况下短接复位端子和 GND 端子重新上电, LED 闪烁完成复位

3.2 连接高级软件

1) 连接好模块后上电,打开 DAM-2000M 高级软件,点击连接的串口,配置串口参数后,点击开"打开串口","搜索设备",对话框点击"搜寻",若搜寻到模块则对应端口下会有模块型号,反之请检查一下板卡参数是否与上位机搜索参数是否一致,若板卡参数清楚,可将板卡恢复出厂后按默认参数重新搜索一遍。

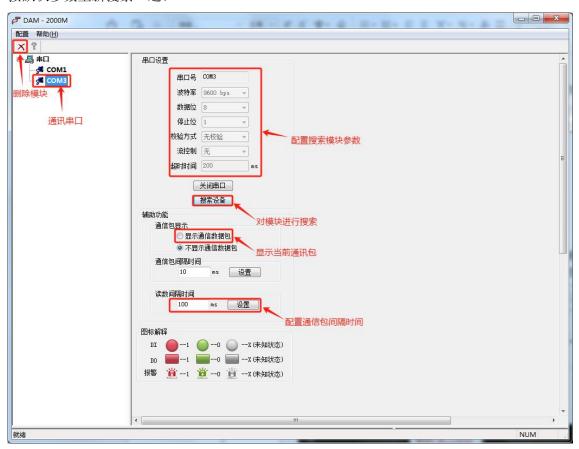


图 12

3.3 板卡参数设置

1) 修改板卡参数:

双击对应模块名,在"基础操作"对话框中可以设置板卡的地址、波特率、通讯格式,设置完成后点击"修改",板卡即可设置成功。同时,板卡的恢复出厂和重启操作也可在此界面进行设置。

■ ❷ 阿尔泰科技

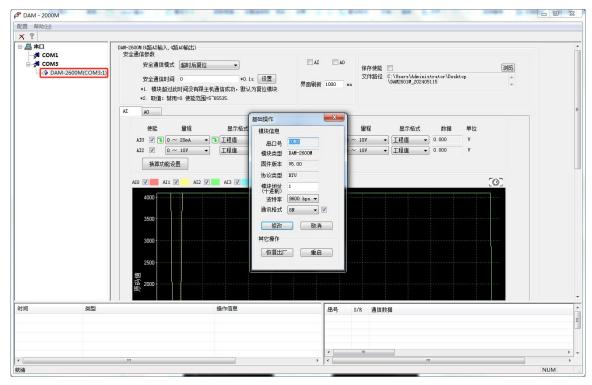


图 13

2) AI 参数设置:

点击图 14-①可设置当前通道的采集使能,图 14-②选择当前 AI 采集量程,图 14-③可将通道 0 的量程应用到所有通道。

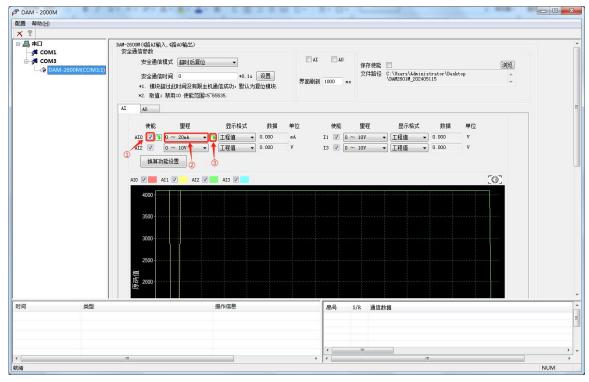


图 14

3) AO 参数设置:

在此对话框中填入输出值,点击"设置"AO输出对应数值,也可通过拉动拨杆实现AO的输出,量程和输出斜率可通过点击下拉进行设置,写入上电值和安全值后点击设置"设置上电值""设置安全值"可对板卡**当前通道**的上电值和安全值进行设置。

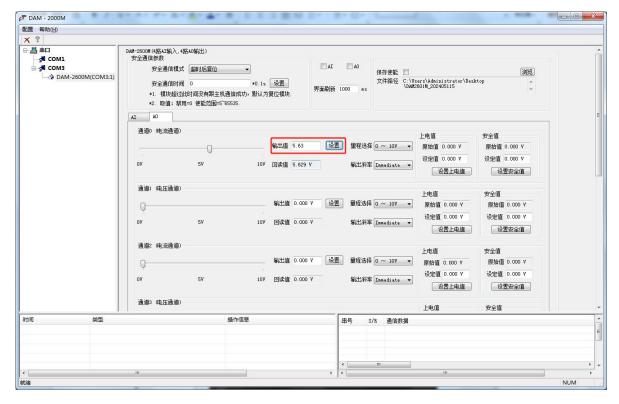


图 15

3.4 其他操作

1) 安全通讯设置:

可通过上位机对通讯看门狗进行设置。

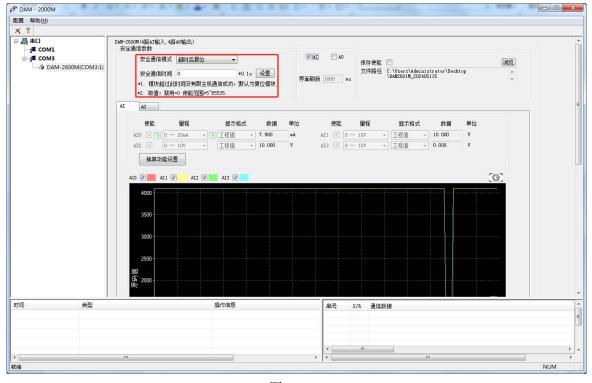


图 16

■ ❷ 阿尔泰科技

2) 数据保存功能设置:

点击下图对钩可将数据保存到指定位置。

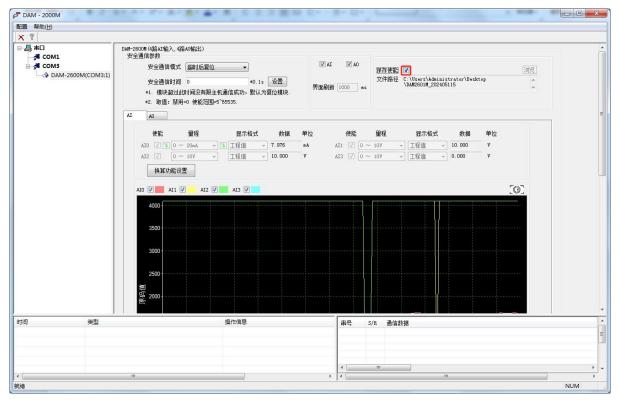
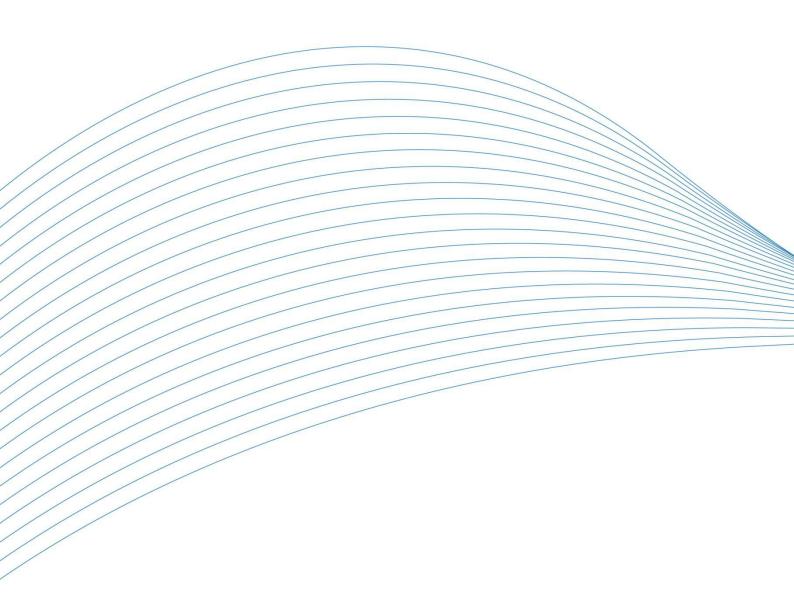


图 17

■ 4 产品注意事项及保修


4.1 注意事项

在公司售出的产品包装中,用户将会找到产品DAM-2600M和产品质保卡。产品质保卡请用户务必妥善保存,当该产品出现问题需要维修时,请用户将产品质保卡同产品一起,寄回本公司,以便我们能尽快的帮助用户解决问题。

在使用 DAM-2600M 时,应注意 DAM-2600M 正面的 IC 芯片不要用手去摸,防止芯片受到静电的危害。

4.2 保修

DAM-2600M自出厂之日起,两年内凡用户遵守运输,贮存和使用规则,而质量低于产品标准者公司免费维修。

阿尔泰科技

服务热线:400-860-3335

网址: www.art-control.com