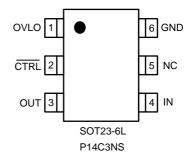


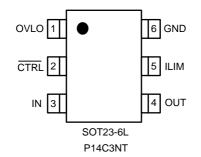
Description

The P14C3N is an Over-Voltage-Protection (OVP) load switch with adjustable OVLO threshold voltage. The device will switch off internal MOSFET to disconnect IN to OUT to protect load when any of input voltage over the threshold.

When the OVLO input set below the external OVLO select voltage, the P14C3N automatically chooses the internal fixed OVLO threshold voltage. The over voltage protection threshold voltage can be adjusted with external resistor divider and the OVLO threshold voltage range is 4.0V~16V. The Over temperature protection (OTP) function monitors chip temperature to protect the device.

The P14C3ND is available in DFN2x2-8L package and the P14C3NS/P14C3NT is available in SOT23-6L package.




N-MOSFET

w/o external N-MOSFET application

w/i external N-MOSFET application

Figure 1: Typical Application

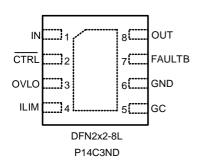


Figure 2: Pin order (Top view)

Feature

- Maximum input voltage: 40V
- Switch ON resistance: 79mΩ Typ.(DFN2x2-8L)

85mΩ Typ.(SOT23-6L)

- > Ultra fast OVP response time: 50ns Typ.
- Programmed over-current protection:200mA-3A
- Adjustable OVLO threshold voltage: 4.0V-16V,±3%
- Fixed internal OVLO threshold voltage: 6.0V, ±3%
- Over temperature protection

Application

- Mobile Handsets and Tablets
- Portable Media Players
- Peripherals

Pin Definitions

	Pin No.		011	Descriptions.
P14C3ND	P14C3NS	P14C3NT	Symbol	Descriptions
1	4	3	IN	Switch Input and Device Power Supply.
2	2	2	CTRL	OUTPUT power path is enabled when CTRL is logic low or floating.
3	1	1	OVLO	External OVLO adjustment. Connect a resistor-divider to set different OVLO threshold, VoVLO=1.2x(1+R1/R2) as shown typical application diagram. Connect OVLO to GND when using the internal fixed threshold voltage. R2=120kohm is recommended.
4	NC	5	ILIM	Current limit adjustment. Connect a resistor to GND to set over current threshold. ILim = $5.6 \div R3$ (current in A, resistance in k Ω). For example, ILim = $1.0A$ if R3= $5.6k\Omega$. Short ILIM to GND will disable current limitation. An optional capacitor to GND for OCP response time setting.
5	_	_	GC	Gate control pin.
6	6	6	GND	Ground.
7			FAULTB	Fault indication, Open drain output, active-low at OTP, OCP, Chip disable and short status.
8	3	4	OUT	Switch Output to Load.

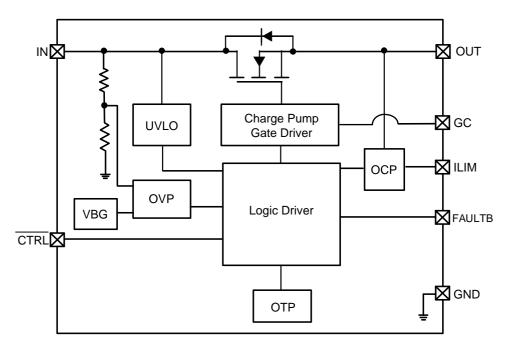


Figure 3: IC Block Diagram

Over voltage and over current protector

Absolute Maximum Rating

Parameter(Note1)	Symbol	Value	Units
Input voltage (IN pin)	V _{IN}	-0.3 ~ 40	V
Output voltage (OUT pin)	V _{оит}	-0.3 ~ 22	V
Input voltage (CTRL, OVLO pin)	V _{CTRL} , V _{OVLO}	-0.3 ~ 6.0	V
Junction temperature	TJ	150	°C
Lead temperature(10s)	TL	260	°C
Storage temperature	Tstg	-55~150	°C
	НВМ	±2000	V
ESD Ratings	CDM	±500	V

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Value	Units
Input voltage	V _{IN}	3.5~40	V
MAX Continuous Output current	I _{OUT}	2.5	A
Ambient operating temperature	Topr	-40~85	$^{\circ}$ C

Rev.1.2. 3 www.prisemi.com

Over voltage and over current protector

Electrical Characteristic

 $(T_{A}\text{=}25^{\circ}\text{C}\text{, }V_{IN}\text{=}5\text{V}\text{, }C_{IN}\text{=}0.1\text{uF, }C_{OUT}\text{=}0.1\text{uF, unless otherwise specified.})$

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
General Function						
Input voltage range	VIN		3.5		40	V
Quiescent current	la	No Load, CTRL=GND, OVLO=GND, V _{IN} =5V		100		uA
Over voltage quiescent current	IQ_OVP	No Load, CTRL=GND, OVLO=GND, Vin=30V		120		uA
Disable OVP quiescent current	I _{Q_DIS}	No Load, CTRL=5V, OVLO=GND V _{IN} =5V		4		uA
	RDS(ON)	V _{IN} =5V, I _{OUT} =1A, P14C3ND		79		mΩ
ON resistance		V _{IN} =5V, I _{OUT} =1A, P14C3NT,P14C3NS		85		mΩ
Power on delay time	Ton_delay	V _{IN} =0V to 5V		5		ms
Turn On Time	T _{ON}	Vout=Vin*10% to Vout=Vin*90%		150		us
CTRL high threshold voltage	V _{CTRL_H}	VCTRL Rising	1.4			V
CTRL low threshold voltage	V _{CTRL_L}	VCTRL Falling			0.4	V
UVLO threshold voltage	V _{UVLO}	V _{IN} Rising		2.07		V
UVLO hysteresis voltage	V _{UVLO_HYS}	V _{IN} Falling		40		mV
OVP Function			•			
OVP response time	T _{OVP}	V _{IN} Rising, C _{IN} =C _L =0pF		50		ns
OVP set threshold voltage	Vovlo_th			1.1		V
Adjust OVP voltage range	Vovp_extsel	V _{IN} Rising	4.0		16	V
	Vovp_intsel		5.82	6.0	6.18	V
OVP hysteresis voltage	Vovp_hys			0.2		V
Output discharge resistance	RDCHG	Vin=5V		220		Ω
OCP Function			1	ı	T	
OCP current	Іоср	Current Rising	200		3000	mA
OCP accuracy	Accuracy_locp	locp < 1A	- 15		+ 15	%
·		locp≥1A	- 10		+ 10	%
OCP deglitch time OCP detect delay time at	TDEGLITCH_OCP			1.4		ms
start-up	Тоср	Vin=0V to 5V		10		ms
Over current recover delay time	Tocr			9		S
Start-up Protection Function						
Load capability at start-up	ILOAD_ON		1			Α
Output voltage at start-up	Vout_ovp	Vin=0 to 15V		0		mV
SCP Function						
Current Limit at SCP	Ishort_LIMIT			0.7		Α
SCP deglitch time	TDELAY_SHORT			1.4		ms
Short recover delay time	Tscr			9		S
OTP Function						
OTP threshold temperature	Тотр	Vin=5V		150		${\mathbb C}$
OTP hysteresis temperature	Тнүѕ	Vin=5V		30		°C

Typical Operating Performance

 $(T_{A}=25^{\circ}C,\ V_{IN}=5V,\ V_{CTRL}=5V,\ unless \ otherwise\ specified.)$

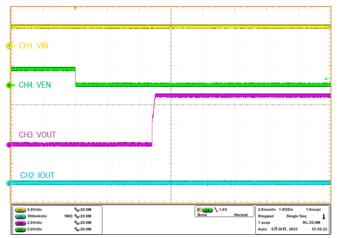


Figure 4. Enable No Load

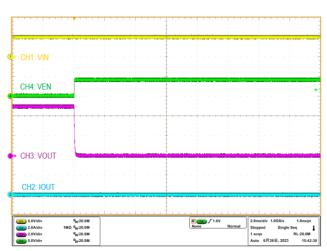


Figure 5. Disable, No Load

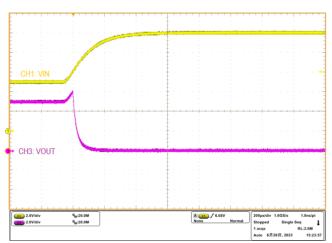


Figure 6. OVP Response

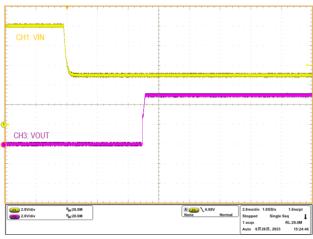


Figure 7. OVP Recovery Response

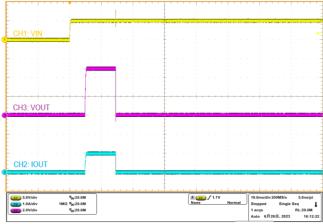


Figure 8. OCP Response at Start-up (Rload= 4Ω , Rlim= $5.6k\Omega$)

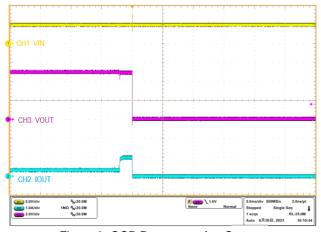


Figure 9. OCP Response after Start-up (Rload=14 Ω to 4 Ω , Rlim=5.6k Ω)

Over voltage and over current protector

Typical Operating Performance (continued)

 $(T_A = 25^{\circ}C, \ \ V_{IN} = 5V, \ \ V_{CTRL} = 5V, \ \ unless \ otherwise \ specified.)$

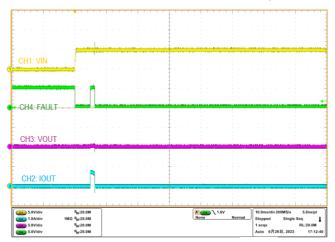


Figure 10. Fault Indication at SCP

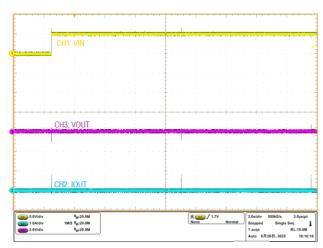


Figure 11. Short recover delay time

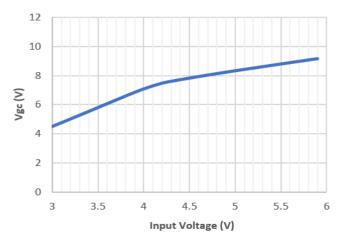


Figure 12. Gate Control Voltage vs. Input Voltage

Function Descriptions

Over Current Protection (OCP)

The Over Current threshold can adjustable by a external resistor connected from the ILIM pin to GND. In the application without external NMOS, the OCP threshold is calculated by the following formula:

IOCP=5.6÷R3 (current in A, resistance in
$$k\Omega$$
)

If the output current exceed the locp threshold, the device limits the current for a blanking duration of Tocp. If the over current situation exceeds the Tocp, the switch will turned off, and the Fault pin is go low. The switch will resoft start again after Tock.

In other applications of P14C3ND, an NMOS can be connected in parallel between the input and output of P14C3ND to reduce the on-resistance(see Figure 1). The locp setting in this application can be calculated by the following formula:

$$I_{OCP} = \left(\frac{RON_{NMOS} + RON_{P14C3N}}{RON_{NMOS}}\right) * \frac{5.6}{R3}$$
 , (current in A, resistance in kΩ)

RON_{NMOS}: On resistance of NMOS

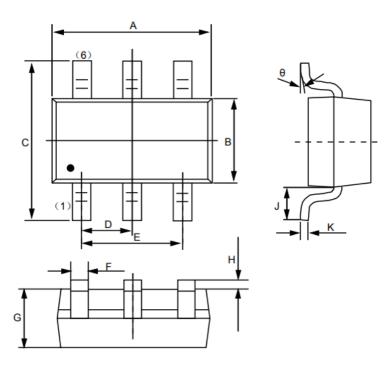
RON_{P14C3N}: On resistance of P14C3ND

Input Over Voltage Protection (OVP)

The P14C3N Input has an over voltage protection to protect system. When the VIN voltage rises above VOVP_INTSEL (fix 6.0V) or VOVP_EXTSEL (set by external divider resistance), the system will turn the switch off. The external OVP threshold is calculated by the equation:

VovP_EXTSEL =1.2x(1+R1/R2). R2=120k Ω is recommended.

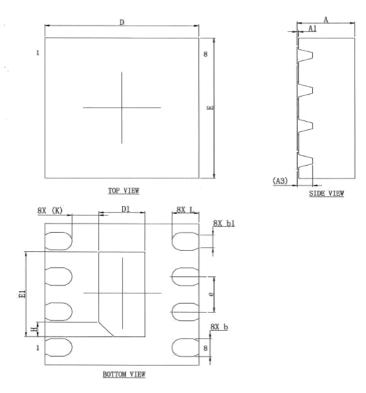
Under Voltage Lockout (UVLO)


The P14C3N had an UVLO internal circuit that enable the device once the VIN voltage exceeds the UVLO threshold voltage.

Over Temperature Protection (OTP)

The device monitors the internal junction temperature to provide thermal shutdown. When IC junction temperature exceeds $Totp(150 \, ^{\circ}C)$, the switch is turned off. The output will restart when IC junction temperature is below $Totp(150 \, ^{\circ}C)$ - $Thys(30 \, ^{\circ}C)$.

Product Dimension (SOT23-6L)



Dim	Millimeters				
Dim	MIN	NOM	MAX		
Α	2.87	2.92	2.97		
В	1.55	1.60	1.65		
С	2.72	2.80	2.88		
D	0.95BSC				
Е	1.80	1.90	2.00		
F	0.30	0.35	0.45		
G	1.06	1.15	1.24		
Н	0.01	0.05	0.09		
J	0.55	0.60	0.65		
K	0.127REF				
θ	00		8°		

Rev.1.2. 8 www.prisemi.com

Product Dimension (DFN2X2-8L)

Dim	Millimeters				
Dim	MIN	Тур.	MAX		
Α	0.700	0.750	0.800		
A1	0.000	0.020	0.050		
А3		0.203REF			
b	0.200	0.250	0.300		
b1		0.18REF			
D	1.900	2.000	2.100		
Е	1.900	2.000	2.100		
е		0.500BSC			
D1	0.500	0.600	0.700		
E1	1.100	1.200	1.300		
L	0.300	0.350	0.400		
K		0.350REF			
Н	0.200REF				

Rev.1.2. 9 www.prisemi.com

Over voltage and over current protector

IMPORTANT NOTICE

and Prisemi are registered trademarks of Prisemi Electronics Co., Ltd (Prisemi), Prisemi reserves the right to make changes without further notice to any products herein. Prisemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Prisemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in Prisemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. Prisemi does not convey any license under its patent rights nor the rights of others. The products listed in this document are designed to be used with ordinary electronic equipment or devices, Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

Prisemi reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and datasheets before placing orders and should verify that such information is current and complete.

Website: http://www.prisemi.com
For additional information, please contact your local Sales Representative.

©Copyright 2009, Prisemi Electronics

Prisemi is a registered trademark of Prisemi Electronics.

All rights are reserved.